This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
John Stillwell is the author of many books on mathematics; among the best known are Mathematics and its History, Naive Lie Theory, and Elements of Mathematics. He is a member of the inaugural class of Fellows of the American Mathematical Society and winner of the Chauvenet Prize for mathematical exposition.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,84 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,76 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781316518953_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Very Good. New. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1316518957-8-1
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. Artikel-Nr. 9781316518953
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 250 pages. 9.00x6.00x0.56 inches. In Stock. Artikel-Nr. x-1316518957
Anzahl: 2 verfügbar