Verwandte Artikel zu Optimization of Heterogeneous UAV Communications Using...

Optimization of Heterogeneous UAV Communications Using the Multiobjective Quadratic Assignment Problem - Softcover

 
9781288409365: Optimization of Heterogeneous UAV Communications Using the Multiobjective Quadratic Assignment Problem

Inhaltsangabe

The Air Force has placed a high priority on developing new and innovative ways to use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency (DARPA) currently funds many projects that deal with the advancement of UAV research. The ultimate goal of the Air Force is to use UAVs in operations that are highly dangerous to pilots, mainly the suppression of enemy air defenses (SEAD). With this goal in mind, formation structuring of autonomous or semiautonomous UAVs is of future importance. This particular research investigates the optimization of heterogeneous UAV multichannel communications in formation. The problem maps to the multiob jective Quadratic Assignment Problem (mQAP). Optimization of this problem is done through the use of a Multiob jective Evolutionary Algorithm (MOEA) called the Multiob jective Messy Genetic Algorithm II (MOMGAII). Experimentation validates the attainment of an acceptable Pareto Front for a variety of mQAP benchmarks. It was observed that building block size can affect the location vectors along the current Pareto Front. The competitive templates used during testing perform best when they are randomized before each building block size evaluation. This tuning of the MOMGAII parameters creates a more effective algorithm for the variety of mQAP benchmarks, when compared to the initial experiments. Thus this algorithmic approach would be useful for Air Force decision makers in determining the placement of UAVs in formations.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The Air Force has placed a high priority on developing new and innovative ways to use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency (DARPA) currently funds many projects that deal with the advancement of UAV research. The ultimate goal of the Air Force is to use UAVs in operations that are highly dangerous to pilots, mainly the suppression of enemy air defenses (SEAD). With this goal in mind, formation structuring of autonomous or semiautonomous UAVs is of future importance. This particular research investigates the optimization of heterogeneous UAV multichannel communications in formation. The problem maps to the multiob jective Quadratic Assignment Problem (mQAP). Optimization of this problem is done through the use of a Multiob jective Evolutionary Algorithm (MOEA) called the Multiob jective Messy Genetic Algorithm II (MOMGAII). Experimentation validates the attainment of an acceptable Pareto Front for a variety of mQAP benchmarks. It was observed that building block size can affect the location vectors along the current Pareto Front. The competitive templates used during testing perform best when they are randomized before each building block size evaluation. This tuning of the MOMGAII parameters creates a more effective algorithm for the variety of mQAP benchmarks, when compared to the initial experiments. Thus this algorithmic approach would be useful for Air Force decision makers in determining the placement of UAVs in formations.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagBiblioScholar
  • Erscheinungsdatum2012
  • ISBN 10 1288409362
  • ISBN 13 9781288409365
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten196
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,87 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Optimization of Heterogeneous UAV Communications Using...

Beispielbild für diese ISBN

Kleeman, Mark P
Verlag: Biblioscholar, 2012
ISBN 10: 1288409362 ISBN 13: 9781288409365
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781288409365_new

Verkäufer kontaktieren

Neu kaufen

EUR 55,67
Währung umrechnen
Versand: EUR 5,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Kleeman, Mark P.
Verlag: BIBLIOLIFE, 2012
ISBN 10: 1288409362 ISBN 13: 9781288409365
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. KlappentextrnrnThe Air Force has placed a high priority on developing new and innovative ways to use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency (DARPA) currently funds many projects that deal with the advancem. Artikel-Nr. 6561740

Verkäufer kontaktieren

Neu kaufen

EUR 61,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mark P. Kleeman
Verlag: Bibliolife Dez 2012, 2012
ISBN 10: 1288409362 ISBN 13: 9781288409365
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - The Air Force has placed a high priority on developing new and innovative ways to use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency (DARPA) currently funds many projects that deal with the advancement of UAV research. The ultimate goal of the Air Force is to use UAVs in operations that are highly dangerous to pilots, mainly the suppression of enemy air defenses (SEAD). With this goal in mind, formation structuring of autonomous or semiautonomous UAVs is of future importance. This particular research investigates the optimization of heterogeneous UAV multichannel communications in formation. The problem maps to the multiob jective Quadratic Assignment Problem (mQAP). Optimization of this problem is done through the use of a Multiob jective Evolutionary Algorithm (MOEA) called the Multiob jective Messy Genetic Algorithm II (MOMGAII). Experimentation validates the attainment of an acceptable Pareto Front for a variety of mQAP benchmarks. It was observed that building block size can affect the location vectors along the current Pareto Front. The competitive templates used during testing perform best when they are randomized before each building block size evaluation. This tuning of the MOMGAII parameters creates a more effective algorithm for the variety of mQAP benchmarks, when compared to the initial experiments. Thus this algorithmic approach would be useful for Air Force decision makers in determining the placement of UAVs in formations. Artikel-Nr. 9781288409365

Verkäufer kontaktieren

Neu kaufen

EUR 80,96
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb