Nondestructive structural health monitoring (SHM) is an evolving technology being developed for monitoring air and space systems. The information gathered on a system's structural integrity through SHM detection methods may result in reduced costly maintenance inspections, enhanced safety, and system failure predic- tions. This study evaluates Lamb wave approaches used to detect simulated cracks in laboratory experiments on thin plates to detect realistic damage in a test arti- cle representing the complex geometry of an existing aircraft bulkhead. We take a "hot-spot" monitoring approach, where we monitor an area of the structure known to fail. In our experiments, we evaluated the use of piezoelectric generated tuned Lamb waves for crack detection. The use of Lamb waves, guided elastic waves in a plate, has shown promise in detecting highly localized damage due to the relatively short wavelengths of the propagating waves. We evaluated both pitch-catch and pulse-echo approaches for Lamb wave excitation and measurement. Crack detection is accomplished by comparing the responses from the damaged test article to the responses of the healthy test article.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Nondestructive structural health monitoring (SHM) is an evolving technology being developed for monitoring air and space systems. The information gathered on a system's structural integrity through SHM detection methods may result in reduced costly maintenance inspections, enhanced safety, and system failure predic- tions. This study evaluates Lamb wave approaches used to detect simulated cracks in laboratory experiments on thin plates to detect realistic damage in a test arti- cle representing the complex geometry of an existing aircraft bulkhead. We take a "hot-spot" monitoring approach, where we monitor an area of the structure known to fail. In our experiments, we evaluated the use of piezoelectric generated tuned Lamb waves for crack detection. The use of Lamb waves, guided elastic waves in a plate, has shown promise in detecting highly localized damage due to the relatively short wavelengths of the propagating waves. We evaluated both pitch-catch and pulse-echo approaches for Lamb wave excitation and measurement. Crack detection is accomplished by comparing the responses from the damaged test article to the responses of the healthy test article.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781288408443_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnNondestructive structural health monitoring (SHM) is an evolving technology being developed for monitoring air and space systems. The information gathered on a system s structural integrity through SHM detection methods may result. Artikel-Nr. 6561655
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Nondestructive structural health monitoring (SHM) is an evolving technology being developed for monitoring air and space systems. The information gathered on a system's structural integrity through SHM detection methods may result in reduced costly maintenance inspections, enhanced safety, and system failure predic- tions. This study evaluates Lamb wave approaches used to detect simulated cracks in laboratory experiments on thin plates to detect realistic damage in a test arti- cle representing the complex geometry of an existing aircraft bulkhead. We take a 'hot-spot' monitoring approach, where we monitor an area of the structure known to fail. In our experiments, we evaluated the use of piezoelectric generated tuned Lamb waves for crack detection. The use of Lamb waves, guided elastic waves in a plate, has shown promise in detecting highly localized damage due to the relatively short wavelengths of the propagating waves. We evaluated both pitch-catch and pulse-echo approaches for Lamb wave excitation and measurement. Crack detection is accomplished by comparing the responses from the damaged test article to the responses of the healthy test article. Artikel-Nr. 9781288408443
Anzahl: 2 verfügbar