The multidimensional knapsack problem (MKP) has been used to model a variety of practical optimization and decision-making applications. Due to its combinatorial nature, heuristics are often employed to quickly find good solutions to MKPs. While there have been a variety of heuristics proposed for the MKP, and a plethora of empirical studies comparing the performance of these heuristics, little has been done to garner a deeper understanding of heuristic performance as a function of problem structure. This dissertation presents a research methodology, empirical and theoretical results explicitly aimed at gaining a deeper understanding of heuristic procedural performance as a function of test problem characteristics. This work first employs an available, robust set of two-dimensional knapsack problems in an empirical study to garner performance insights. These performance insights are tested against a larger set of problems, five-dimensional knapsack problems specifically generated for empirical testing purposes. The performance insights are found to hold in the higher dimensions. These insights are used to formulate and test a suite of three new greedy heuristics for the MKP, each improving upon its successor.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The multidimensional knapsack problem (MKP) has been used to model a variety of practical optimization and decision-making applications. Due to its combinatorial nature, heuristics are often employed to quickly find good solutions to MKPs. While there have been a variety of heuristics proposed for the MKP, and a plethora of empirical studies comparing the performance of these heuristics, little has been done to garner a deeper understanding of heuristic performance as a function of problem structure. This dissertation presents a research methodology, empirical and theoretical results explicitly aimed at gaining a deeper understanding of heuristic procedural performance as a function of test problem characteristics. This work first employs an available, robust set of two-dimensional knapsack problems in an empirical study to garner performance insights. These performance insights are tested against a larger set of problems, five-dimensional knapsack problems specifically generated for empirical testing purposes. The performance insights are found to hold in the higher dimensions. These insights are used to formulate and test a suite of three new greedy heuristics for the MKP, each improving upon its successor.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,88 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781288307968_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnThe multidimensional knapsack problem (MKP) has been used to model a variety of practical optimization and decision-making applications. Due to its combinatorial nature, heuristics are often employed to quickly find good solutions. Artikel-Nr. 6554583
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - The multidimensional knapsack problem (MKP) has been used to model a variety of practical optimization and decision-making applications. Due to its combinatorial nature, heuristics are often employed to quickly find good solutions to MKPs. While there have been a variety of heuristics proposed for the MKP, and a plethora of empirical studies comparing the performance of these heuristics, little has been done to garner a deeper understanding of heuristic performance as a function of problem structure. This dissertation presents a research methodology, empirical and theoretical results explicitly aimed at gaining a deeper understanding of heuristic procedural performance as a function of test problem characteristics. This work first employs an available, robust set of two-dimensional knapsack problems in an empirical study to garner performance insights. These performance insights are tested against a larger set of problems, five-dimensional knapsack problems specifically generated for empirical testing purposes. The performance insights are found to hold in the higher dimensions. These insights are used to formulate and test a suite of three new greedy heuristics for the MKP, each improving upon its successor. Artikel-Nr. 9781288307968
Anzahl: 2 verfügbar