Verwandte Artikel zu Optimization of a Quantum Cascade Laser Operating in...

Optimization of a Quantum Cascade Laser Operating in the Terahertz Frequency Range Using a Multiobjective Evolutionary Algorithm - Softcover

 
9781249362616: Optimization of a Quantum Cascade Laser Operating in the Terahertz Frequency Range Using a Multiobjective Evolutionary Algorithm

Inhaltsangabe

A quantum cascade (QC) laser is a specific type of semiconductor laser that operates through principles of quantum mechanics. In less than a decade QC lasers are already able to outperform previously designed double heterostructure semiconductor lasers. Because there is a genuine lack of compact and coherent devices which can operate in the far-infrared region the motivation exists for designing a terahertz QC laser. A device operating at this frequency is expected to be more efficient and cost effective than currently existing devices. It has potential applications in the fields of spectroscopy, astronomy, medicine and free-space communication as well as applications to near-space radar and chemical/biological detection. The overarching goal of this research was to find QC laser parameter combinations which can be used to fabricate viable structures. To ensure operation in the THz region the device must conform to the extremely small energy level spacing range from 1015 meV. The time and expense of the design and production process is prohibitive, so an alternative to fabrication was necessary. To accomplish this goal a model of a QC laser, developed at Worchester Polytechnic Institute with sponsorship from the Air Force Research Laboratory Sensors Directorate, and the General Multiobjective Parallel Genetic Algorithm (GenMOP), developed at the Air Force Institute of Technology, were integrated to form a computer simulation which stochastically searches for feasible solutions. GenMOP is a pareto-based algorithm that utilizes real values for crossover and mutation operators. Additionally, the algorithm employs fitness sharing through a niche radius. The individual chromosomes are encoded with real-values denoting the temperature, bias, current density, layer thickness and donor density of a particular laser. Auxiliary genes are associated with the individual chromosomes to define fitness values and pareto ranking. The GA investigates 17 distinct frequencie
ranging

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

A quantum cascade (QC) laser is a specific type of semiconductor laser that operates through principles of quantum mechanics. In less than a decade QC lasers are already able to outperform previously designed double heterostructure semiconductor lasers. Because there is a genuine lack of compact and coherent devices which can operate in the far-infrared region the motivation exists for designing a terahertz QC laser. A device operating at this frequency is expected to be more efficient and cost effective than currently existing devices. It has potential applications in the fields of spectroscopy, astronomy, medicine and free-space communication as well as applications to near-space radar and chemical/biological detection. The overarching goal of this research was to find QC laser parameter combinations which can be used to fabricate viable structures. To ensure operation in the THz region the device must conform to the extremely small energy level spacing range from 1015 meV. The time and expense of the design and production process is prohibitive, so an alternative to fabrication was necessary. To accomplish this goal a model of a QC laser, developed at Worchester Polytechnic Institute with sponsorship from the Air Force Research Laboratory Sensors Directorate, and the General Multiobjective Parallel Genetic Algorithm (GenMOP), developed at the Air Force Institute of Technology, were integrated to form a computer simulation which stochastically searches for feasible solutions. GenMOP is a pareto-based algorithm that utilizes real values for crossover and mutation operators. Additionally, the algorithm employs fitness sharing through a niche radius. The individual chromosomes are encoded with real-values denoting the temperature, bias, current density, layer thickness and donor density of a particular laser. Auxiliary genes are associated with the individual chromosomes to define fitness values and pareto ranking. The GA investigates 17 distinct frequencie
ranging

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagBiblioScholar
  • Erscheinungsdatum2012
  • ISBN 10 124936261X
  • ISBN 13 9781249362616
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten128
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,85 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Optimization of a Quantum Cascade Laser Operating in...

Beispielbild für diese ISBN

Keller, Traci A
Verlag: Biblioscholar, 2012
ISBN 10: 124936261X ISBN 13: 9781249362616
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781249362616_new

Verkäufer kontaktieren

Neu kaufen

EUR 55,46
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Traci A. Keller
ISBN 10: 124936261X ISBN 13: 9781249362616
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - A quantum cascade (QC) laser is a specific type of semiconductor laser that operates through principles of quantum mechanics. In less than a decade QC lasers are already able to outperform previously designed double heterostructure semiconductor lasers. Because there is a genuine lack of compact and coherent devices which can operate in the far-infrared region the motivation exists for designing a terahertz QC laser. A device operating at this frequency is expected to be more efficient and cost effective than currently existing devices. It has potential applications in the fields of spectroscopy, astronomy, medicine and free-space communication as well as applications to near-space radar and chemical/biological detection. The overarching goal of this research was to find QC laser parameter combinations which can be used to fabricate viable structures. To ensure operation in the THz region the device must conform to the extremely small energy level spacing range from 1015 meV. The time and expense of the design and production process is prohibitive, so an alternative to fabrication was necessary. To accomplish this goal a model of a QC laser, developed at Worchester Polytechnic Institute with sponsorship from the Air Force Research Laboratory Sensors Directorate, and the General Multiobjective Parallel Genetic Algorithm (GenMOP), developed at the Air Force Institute of Technology, were integrated to form a computer simulation which stochastically searches for feasible solutions. GenMOP is a pareto-based algorithm that utilizes real values for crossover and mutation operators. Additionally, the algorithm employs fitness sharing through a niche radius. The individual chromosomes are encoded with real-values denoting the temperature, bias, current density, layer thickness and donor density of a particular laser. Auxiliary genes are associated with the individual chromosomes to define fitness values and pareto ranking. The GA investigates 17 distinct frequencie ranging. Artikel-Nr. 9781249362616

Verkäufer kontaktieren

Neu kaufen

EUR 80,96
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb