Medical Risk Prediction Models: With Ties to Machine Learning is a hands-on book for clinicians, epidemiologists, and professional statisticians who need to make or evaluate a statistical prediction model based on data. The subject of the book is the patient’s individualized probability of a medical event within a given time horizon. Gerds and Kattan describe the mathematical details of making and evaluating a statistical prediction model in a highly pedagogical manner while avoiding mathematical notation. Read this book when you are in doubt about whether a Cox regression model predicts better than a random survival forest.
Features:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Thomas A. Gerds is professor at the biostatistics unit at the University of Copenhagen. He is affiliated with the Danish Heart Foundation. He is author of several R-packages on CRAN and has taught statistics courses to non-statisticians for many years.
Michael Kattan is a highly cited author and Chair of the Department of Quantitative Health Sciences at Cleveland Clinic. He is a Fellow of the American Statistical Association and has received two awards from the Society for Medical Decision Making: the Eugene L. Saenger Award for Distinguished Service, and the John M. Eisenberg Award for Practical Application of Medical Decision Making Research.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 10,23 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 379549412
Anzahl: 3 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781138384477_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 290 pages. 9.25x6.25x1.00 inches. In Stock. Artikel-Nr. x-113838447X
Anzahl: 2 verfügbar