Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.
The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Francois Husson, Sebastien Le, Jérôme Pagès
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 10,13 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 370417004
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Buch. Zustand: New. Artikel-Nr. 595382383
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2nd edition. 248 pages. 9.50x6.50x0.75 inches. In Stock. Artikel-Nr. __1138196347
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors. Artikel-Nr. 9781138196346
Anzahl: 2 verfügbar