This text provides a modern introduction to regression and classification with an emphasis on big data and R. Each chapter is partitioned into a main body section and an extras section. The main body uses math stat very sparingly and always in the context of something concrete, which means that readers can skip the math stat content entirely if they wish. The extras section is for those who feel comfortable with analysis using math stat.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. Statistical Regression and Classification: From Linear Models to Machine Learning was awarded the 2017 Ziegel Award for the best book reviewed in Technometrics in 2017. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This text provides a modern introduction to regression and classification with an emphasis on big data and R. The main body uses math stat sparingly and always in the context of something concrete; readers can skip the math stat content entirely if they wish. Artikel-Nr. 9781138066465
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 489 pages. 9.50x6.75x1.25 inches. In Stock. Artikel-Nr. __113806646X
Anzahl: 1 verfügbar