Symbolic regression (SR) is one of the most powerful machine learning techniques that produces transparent models, searching the space of mathematical expressions for a model that represents the relationship between the predictors and the dependent variable without the need of taking assumptions about the model structure.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The authors are all affiliated with the University of Applied Sciences (UAS) Upper Austria.
Gabriel Kronberger is professor for data engineering and business intelligence. His research interests are symbolic regression and machine learning as well as probabilistic graphical models.
Bogdan Burlacu is a research assistant. His main focus is the study of genetic programming evolutionary dynamics in symbolic regression scenarios.
Michael Kommenda is a research assistant. He has been applying symbolic regression methods in various industrial projects and application scenarios.
Stephan M. Winkler is professor for medical and bioinformatics and head of the bioinformatics research group. His research interests despite bioinformatics include genetic programming, nonlinear model identification and machine learning.
Michael Affenzeller is professor for heuristic optimization and machine learning and head of the Heuristic and Evolutionary Algorithms Laboratory. Furthermore, he is the vice dean for research and overall head of the COMET project for heuristic optimization in production and logistics (HOPL).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 10,22 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 390937581
Anzahl: 3 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781138054813_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 296 pages. 9.19x6.13x9.21 inches. In Stock. Artikel-Nr. x-113805481X
Anzahl: 2 verfügbar