Verwandte Artikel zu Machine Learning for Business Analytics: Concepts,...

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R - Hardcover

 
9781119835172: Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R

Inhaltsangabe

MACHINE LEARNING FOR BUSINESS ANALYTICS

Machine learning ―also known as data mining or data analytics― is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the second R edition of Machine Learning for Business Analytics. This edition also includes:

  • A new co-author, Peter Gedeck, who brings over 20 years of experience in machine learning using R
  • An expanded chapter focused on discussion of deep learning techniques
  • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
  • A new chapter on responsible data science
  • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
  • A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Galit Shmueli, PhD, is Distinguished Professor and Institute Director at National Tsing Hua University’s Institute of Service Science. She has designed and instructed business analytics courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan.

Peter C. Bruce, is Founder of the Institute for Statistics Education at Statistics.com, and Chief Learning Officer at Elder Research, Inc.

Peter Gedeck, PhD, is Senior Data Scientist at Collaborative Drug Discovery and teaches at statistics.com and the UVA School of Data Science. His specialty is the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates.

Inbal Yahav, PhD, is a Senior Lecturer in The Coller School of Management at Tel Aviv University, Israel. Her work focuses on the development and adaptation of statistical models for use by researchers in the field of information systems.

Nitin R. Patel, PhD, is Co-founder and Lead Researcher at Cytel Inc. He was also a Co-founder of Tata Consultancy Services. A Fellow of the American Statistical Association, Dr. Patel has served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University, USA.

Von der hinteren Coverseite

Machine learning —also known as data mining or data analytics— is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the second R edition of Machine Learning for Business Analytics. This edition also includes:

  • A new co-author, Peter Gedeck, who brings over 20 years of experience in machine learning using R
  • An expanded chapter focused on discussion of deep learning techniques
  • A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
  • A new chapter on responsible data science
  • Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
  • A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagJohn Wiley & Sons Inc
  • Erscheinungsdatum2023
  • ISBN 10 1119835178
  • ISBN 13 9781119835172
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten688
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Wie neu
Ship within 24hrs. Satisfaction...
Diesen Artikel anzeigen

EUR 7,00 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 5,15 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Machine Learning for Business Analytics: Concepts,...

Beispielbild für diese ISBN

Shmueli, Galit; Bruce, Peter C.; Gedeck, Peter; Yahav, Inbal; Patel, Nitin R.
Verlag: Wiley (edition 2), 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Gebraucht Hardcover

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: As New. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1119835178-10-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 60,97
Währung umrechnen
Versand: EUR 7,00
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shmueli, Galit; Bruce, Peter C.; Gedeck, Peter; Yahav, Inbal; Patel, Nitin R.
Verlag: Wiley (edition 2), 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Gebraucht Hardcover

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Good. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1119835178-11-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 60,97
Währung umrechnen
Versand: EUR 7,00
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shmueli, Galit; Bruce, Peter C.; Gedeck, Peter; Yahav, Inbal; Patel, Nitin R.
Verlag: Wiley (edition 2), 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Gebraucht Hardcover

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1119835178-8-15

Verkäufer kontaktieren

Gebraucht kaufen

EUR 69,62
Währung umrechnen
Versand: EUR 7,00
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Galit Shmueli
Verlag: John Wiley and Sons Inc, 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781119835172

Verkäufer kontaktieren

Neu kaufen

EUR 119,77
Währung umrechnen
Versand: EUR 5,15
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Galit Shmueli
Verlag: John Wiley and Sons Inc, 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Gebraucht Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: Used - Good. Used Book. Shipped from UK. Established seller since 2000. Artikel-Nr. P2-9781119835172

Verkäufer kontaktieren

Gebraucht kaufen

EUR 121,87
Währung umrechnen
Versand: EUR 5,15
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shmueli, Galit; Bruce, Peter C.; Gedeck, Peter; Yahav, Inbal; Patel, Nitin R.
Verlag: Wiley, 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781119835172_new

Verkäufer kontaktieren

Neu kaufen

EUR 135,97
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Galit Shmueli
Verlag: Wiley Mär 2023, 2023
ISBN 10: 1119835178 ISBN 13: 9781119835172
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - MACHINE LEARNING FOR BUSINESS ANALYTICSMachine learning --also known as data mining or data analytics-- is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.This is the second R edition of Machine Learning for Business Analytics. This edition also includes:\* A new co-author, Peter Gedeck, who brings over 20 years of experience in machine learning using R\* An expanded chapter focused on discussion of deep learning techniques\* A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning\* A new chapter on responsible data science\* Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students\* A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques\* End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented\* A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutionsThis textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology. Artikel-Nr. 9781119835172

Verkäufer kontaktieren

Neu kaufen

EUR 143,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb