A comprehensive one-volume reference on current JLFET methods, techniques, and research
Advancements in transistor technology have driven the modern smart-device revolution―many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs
This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource:
Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
SHUBHAM SAHAY, PHD, is a Post-Doctoral Research Scholar in the Department of Electrical and Computer Engineering, University of California, Santa Barbara. He has authored several peer-reviewed journal articles on topics including semiconductor device design and modeling and unconventional applications of emerging non-volatile memories.
MAMIDALA JAGADESH KUMAR, PHD, is a Professor at the Indian Institute of Technology, New Delhi and Vice-Chancellor of Jawaharlal Nehru University, New Delhi. He is Editor-in-Chief of IETE Technical Review and has widely published in the area of Micro/Nanoelectronics.
A comprehensive reference on current JLFET methods, techniques, and research
Advancements in transistor technology have driven the modern smart-device revolution?many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture. JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop reference on the study and research on JLFET.
This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on Sentaurus TCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource:
Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. SHUBHAM SAHAY, PHD, is a Post-Doctoral Research Scholar in the Department of Electrical and Computer Engineering, University of California, Santa Barbara. He has authored several peer-reviewed journal articles on topics including semiconductor device design. Artikel-Nr. 255187876
Anzahl: 3 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781119523536_new
Anzahl: 3 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781119523536
Anzahl: 3 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - A comprehensive one-volume reference on current JLFET methods, techniques, and researchAdvancements in transistor technology have driven the modern smart-device revolution--many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETsThis timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource:\* Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET\* Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation\* Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs\* Suggests research directions and potential applications of JLFETsJunctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices. Artikel-Nr. 9781119523536
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 448. Artikel-Nr. 370315379
Anzahl: 3 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2019. 1st Edition. Hardback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781119523536
Anzahl: 15 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 478 pages. 9.25x6.25x1.00 inches. In Stock. Artikel-Nr. x-1119523532
Anzahl: 2 verfügbar