A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field
This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided.
The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution.
Presented in three parts―Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics―Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Marc S. Paolella, PhD, is a Professor at the Department of Banking and Finance, University of Zurich. He is also the Editor of Econometrics and an Associate Editor of the Royal Statistical Society Journal Series A.
Fundamental Statistical Inference
A Computational Approach
A hands-on approach to Statistical Inference that addresses the latest developments in this ever-growing field
This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions and indirect inference. Practical examples of all methods are given and estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is focused on non-Gaussian distributions, including details of working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided.
Fundamental Statistical Inference: A Computational Approach includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed. Emphasis is also given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution.
Presented in three parts?Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics?Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and offering material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,75 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781119417866
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Marc S. Paolella, PhD, is a Professor at the Department of Banking and Finance, University of Zurich. He is also the Editor of Econometrics and an Associate Editor of the Royal Statistical Society Journal Series AFundamental Statistical InferenceA Compu. Artikel-Nr. 262066470
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 370283171
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781119417866_new
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Praxisorientiertes Fachbuch der Interferenzstatistik mit den neuesten Entwicklungen aus diesem ständig wachsenden Wissensgebiet.Dieses übersichtlich und zugängliche Fachbuch richtet sich an Studenten höherer Semester, präsentiert die Interferenzstatistik ausführlich und praxisorientiert und stellt Ergebnisableitungen sowie MATLAB-Programme umfassend dar, ergänzt um Erläuterungen. Besonderes Augenmerk liegt auf einzelnen bedeutenden Aspekten, auf einer intuitiven Herangehensweise und auf Diskussionen. Der Blick auf die Interferenzstatistik ist dabei überaus modern. Inhalte neben den klassischen Themen rund um die mathematische Statistik: intuitive Präsentation von Einfach-/Doppel-Bootstraps bei der Berechnung von Konfidenzintervallen, Schrumpfungsschätzung, Schätzung des maximalen Moments sowie eine Vielzahl vom Methoden der Punktschätzung, maximale Wahrscheinlichkeit, Anwendung von charakteristischen Funktionen und indirekte Interferenz. Zu allen Methoden gibt es praktische Beispiele. Ausführlich behandelt werden Schätzprobleme und deren Lösung in Verbindung mit der diskreten Mischung bei Normalverteilungen. Durchgängig liegt der Schwerpunkt auf nicht-Gaußschen Verteilungen, einschließlich der ausführlichen Behandlung der stabilen Pareto-Verteilung und der schnellen Berechnung von nicht-zentralen Student-t-Tests. Ein komplettes Kapitel widmet sich der Optimierung, darunter der Entwicklung von Hessian-Methoden, heuristische/genetische Algorithmen, die keine Kontinuität erfordern. Die entsprechenden MATLAB-Codes werden zur Verfügung gestellt. Der Fokus liegt auch auf Berechnungen, die das Thema greifbar und für die Studierenden zugänglich machen. Artikel-Nr. 9781119417866
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 564 pages. 10.00x7.00x1.00 inches. In Stock. Artikel-Nr. __1119417864
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2018. 1st Edition. hardcover. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781119417866
Anzahl: 15 verfügbar