This book provides a starting point for software professionals to apply artificial neural networks for software reliability prediction without having analyst capability and expertise in various ANN architectures and their optimization.
Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process are presented. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Manjubala Bisi is currently an Assistant Professor in the Computer Science and Engineering Department, Kakatiya Institute of Technology and Science, Warangal, Telengana, India. She received her PhD from the Indian Institute of Technology Kharagpur in Reliability Engineering in 2015. Her research interests include software reliability modelling, artificial neural networks and soft computing techniques.
Neeraj Kumar Goyal is currently an Associate Professor in Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India. He received his PhD from IIT Kharagpur in Reliability Engineering in 2006. His major areas of research are network /system reliability and software reliability. He has completed various research and consultancy projects for various organizations, e.g. DRDO, NPCIL, Vodafone, ECIL etc. He has contributed research papers to refereed international journals and conference proceedings.
This book provides a starting point for software professionals to apply artificial neural networks for software reliability prediction without having analyst capability and expertise in various ANN architectures and their optimization.
Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process are presented. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators.
Audience
The book will be invaluable to software researchers and practitioners working in reliability prediction.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Manjubala Bisi is currently an Assistant Professor in the Computer Science and Engineering Department, Kakatiya Institute of Technology and Science, Warangal, Telengana, India. She received her PhD from the Indian Institute of Technology Kharagpur in Reliab. Artikel-Nr. 447234383
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781119223542_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781119223542
Anzahl: 15 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process is presented as well. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators. Artikel-Nr. 9781119223542
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 250. Artikel-Nr. 372760089
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 250 pages. 9.25x6.25x1.00 inches. In Stock. Artikel-Nr. x-1119223547
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Series: Performability Engineering Series. Num Pages: 250 pages. BIC Classification: TJ; UMZ; UYQN. Category: (P) Professional & Vocational. Weight in Grams: 666. . 2017. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9781119223542
Anzahl: Mehr als 20 verfügbar