The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-player grid games―two player grid games, Q-learning, and Nash Q-learning. Chapter 5 discusses differential games, including multi player differential games, actor critique structure, adaptive fuzzy control and fuzzy interference systems, the evader pursuit game, and the defending a territory games. Chapter 6 discusses new ideas on learning within robotic swarms and the innovative idea of the evolution of personality traits.
• Framework for understanding a variety of methods and approaches in multi-agent machine learning.
• Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning
• Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Howard M. Schwartz, PhD, received his B.Eng. Degree from McGill University, Montreal, Canada in une 1981 and his MS Degree and PhD Degree from MIT, Cambridge, USA in 1982 and 1987 respectively. He is currently a professor in systems and computer engineering at Carleton University, Canada. His research interests include adaptive and intelligent control systems, robotic, artificial intelligence, system modelling, system identification, and state estimation.
The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-player grid games&;two player grid games, Q-learning, and Nash Q-learning. Chapter 5 discusses differential games, including multi player differential games, actor critique structure, adaptive fuzzy control and fuzzy interference systems, the evader pursuit game, and the defending a territory games. Chapter 6 discusses new ideas on learning within robotic swarms and the innovative idea of the evolution of personality traits.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,00 für den Versand von Belgien nach Deutschland
Versandziele, Kosten & DauerEUR 10,12 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Le Monde de Kamélia, Bruxelles, Belgien
Zustand: as new. Livraison rapide, bien emballé, service client soigné.Pour tout renseignement complémentaire, n'hésitez pas à nous contacter. Artikel-Nr. 6D653E2999B2
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 350. Artikel-Nr. 127874180
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781118362082
Anzahl: 15 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Howard M. Schwartz, PhD, received his B.Eng. Degree from McGill University, Montreal, Canada in une 1981 and his MS Degree and PhD Degree from MIT, Cambridge, USA in 1982 and 1987 respectively. He is currently a professor in systems and computer engineering. Artikel-Nr. 447233151
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781118362082_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-player grid games--two player grid games, Q-learning, and Nash Q-learning. Chapter 5 discusses differential games, including multi player differential games, actor critique structure, adaptive fuzzy control and fuzzy interference systems, the evader pursuit game, and the defending a territory games. Chapter 6 discusses new ideas on learning within robotic swarms and the innovative idea of the evolution of personality traits.\* Framework for understanding a variety of methods and approaches in multi-agent machine learning.\* Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning\* Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering. Artikel-Nr. 9781118362082
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 256 pages. 9.50x6.50x0.75 inches. In Stock. Artikel-Nr. x-111836208X
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Num Pages: 256 pages, illustrations. BIC Classification: UYQM. Category: (P) Professional & Vocational. Dimension: 163 x 238 x 18. Weight in Grams: 478. . 2014. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9781118362082
Anzahl: Mehr als 20 verfügbar