This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely “from scratch” based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Hui Jiang is Professor of Electrical Engineering and Computer Science at York University, where he has been since 2002. His main research interests include machine learning, particularly deep learning, and its applications to speech and audio processing, natural language processing, and computer vision. Over the past 30 years, he has worked on a wide range of research problems from these areas and published hundreds of technical articles and papers in the mainstream journals and top-tier conferences. His works have won the prestigious IEEE Best Paper Award and the ACL Outstanding Paper honor.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. New. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Artikel-Nr. 1108940021-11-1
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9781108940023
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 418. Artikel-Nr. 390980891
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 400 pages. 10.00x8.00x1.00 inches. In Stock. Artikel-Nr. __1108940021
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2021. New. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781108940023
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 400 pages. 10.00x8.00x1.00 inches. In Stock. Artikel-Nr. x-1108940021
Anzahl: 2 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781108940023
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. This lucid and coherent introduction to supervised machine learning presents core concepts in a concise, logical and easy-to-follow way for readers with some mathematical preparation but no prior exposure to machine learning. Coverage includes widely used t. Artikel-Nr. 485081197
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - A coherent introduction to core concepts and deep learning techniques that are critical to academic research and real-world applications. Artikel-Nr. 9781108940023
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Machine Learning Fundamentals | A Concise Introduction | Hui Jiang | Taschenbuch | Kartoniert / Broschiert | Englisch | 2022 | Cambridge University Press | EAN 9781108940023 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu. Artikel-Nr. 120259722
Anzahl: 1 verfügbar