When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Pablo Duboue is Director of Textualization Software Ltd. and is passionate about improving society through technology. He has a Ph.D. in Computer Science from Columbia University and was part of the IBM Watson team that beat the Jeopardy! Champions in 2011. He splits his time between teaching machine learning, doing open research, contributing to free software projects, and consulting for start-ups. He has taught in three different countries and done joint research with more than fifty co-authors. Recent career highlights include a best paper award in the Canadian AI conference industrial track and consulting for a start-up acquired by Intel Corp.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,70 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FM-9781108709385
Anzahl: 15 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain a. Artikel-Nr. 356107229
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 274 pages. 8.75x6.00x0.75 inches. In Stock. Artikel-Nr. __1108709389
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - A practical guide for data scientists who want to improve the performance of any machine learning solution with feature engineering. Artikel-Nr. 9781108709385
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 274 pages. 8.75x6.00x0.75 inches. In Stock. Artikel-Nr. x-1108709389
Anzahl: 2 verfügbar