Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Martin J. Wainwright is a Chancellor's Professor at the University of California, Berkeley, with a joint appointment between the Department of Statistics and the Department of Electrical Engineering and Computer Sciences. His research lies at the nexus of statistics, machine learning, optimization, and information theory, and he has published widely in all of these disciplines. He has written two other books, one on graphical models together with Michael I. Jordan, and one on sparse learning together with Trevor Hastie and Robert Tibshirani. Among other awards, he has received the COPSS Presdients' Award, has been a Medallion Lecturer and Blackwell Lecturer for the Institute of Mathematical Statistics, and has received Best Paper Awards from the Neural Information Processing Systems (NIPS), the International Conference on Machine Learning (ICML), and the Uncertainty in Artificial Intelligence (UAI) conferences, as well as from the Institute of Electrical and Electronics Engineers (IEEE) Information Theory Society.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,87 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,74 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: As New. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1108498027-10-1
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781108498029
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781108498029_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Recent years have seen an explosion in the volume and variety of data collected in scientific disciplines from astronomy to genetics and industrial settings ranging from Amazon to Uber. This graduate text equips readers in statistics, machine learning, and . Artikel-Nr. 251534953
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding. Artikel-Nr. 9781108498029
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 370804788
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2019. Hardcover. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781108498029
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 552 pages. 10.25x7.25x1.50 inches. In Stock. Artikel-Nr. x-1108498027
Anzahl: 2 verfügbar