This book presents a coherent and unified account of classical and more advanced techniques for analyzing the performance of randomized algorithms.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Devdatt P. Dubhashi is Professor in the Department of Computer Science and Engineering at Chalmers University, Sweden. He earned a Ph.D. in computer science from Cornell University and held positions at the Max-Planck-Institute for Computer Science in Saarbruecken, BRICS, the University of Aarhus and IIT Delhi. Dubhashi has published widely at international conferences and in journals, including many special issues dedicated to best contributions. His research interests span the range from combinatorics to probabilistic analysis of algorithms, and more recently, to computational systems biology and distributed information systems such as the Web.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9781107606609
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9781107606609
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 216 pages. 8.90x5.90x0.70 inches. In Stock. Artikel-Nr. x-1107606608
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Concentration of Measure for the Analysis of Randomized Algorithms | Devdatt P. Dubhashi (u. a.) | Taschenbuch | Kartoniert / Broschiert | Englisch | 2012 | Cambridge University Press | EAN 9781107606609 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu. Artikel-Nr. 108028041
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff-Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff-Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians. Artikel-Nr. 9781107606609
Anzahl: 1 verfügbar