Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation. The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Philipp Hennig holds the Chair for the Methods of Machine Learning at the University of Tübingen, and an adjunct position at the Max Planck Institute for Intelligent Systems. He has dedicated most of his career to the development of Probabilistic Numerical Methods. Hennig's research has been supported by Emmy Noether, Max Planck and ERC fellowships. He is a co-Director of the Research Program for the Theory, Algorithms and Computations of Learning Machines at the European Laboratory for Learning and Intelligent Systems (ELLIS).
Michael A. Osborne is Professor of Machine Learning at the University of Oxford, and a co-Founder of Mind Foundry Ltd. His research has attracted £10.6M of research funding and has been cited over 15,000 times. He is very, very Bayesian.
Hans P. Kersting is a postdoctoral researcher at INRIA and École Normale Supérieure in Paris, working in machine learning with expertise in Bayesian inference, dynamical systems, and optimisation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9781107163447
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 401744411
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 300 pages. 10.16x8.27x0.94 inches. In Stock. Artikel-Nr. __1107163447
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781107163447
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2022. Hardcover. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781107163447
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 300 pages. 10.16x8.27x0.94 inches. In Stock. Artikel-Nr. x-1107163447
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. This text provides a first comprehensive introduction to probabilistic numerics, aimed at Masters and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. It contains extensive. Artikel-Nr. 571462803
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation. The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition. Artikel-Nr. 9781107163447
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Probabilistic Numerics | Computation as Machine Learning | Philipp Hennig (u. a.) | Buch | Gebunden | Englisch | 2022 | Cambridge University Press | EAN 9781107163447 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu. Artikel-Nr. 121318308
Anzahl: 1 verfügbar