For students in statistics, data science, engineering, and science programs needing a solid course in statistical theory and methods.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Steven E. Rigdon is Professor of Biostatistics at Saint Louis University. He is a fellow of the American Statistical Association and is the author of Statistical Methods for the Reliability of Repairable Systems Calculus, 8th and 9th editions, Monitoring the Health of Populations by Tracking Disease Outbreaks (2020), and Design of Experiments for Reliability Achievement (2022). He has received the Waldo Vizeau Award for technical contributions to quality, the Soren Bisgaard Award, and the Paul Simon Award for linking teaching and research. He is also Distinguished Research Professor Emeritus at Southern Illinois University Edwardsville.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 840 pages. 10.00x1.83x10.18 inches. In Stock. Artikel-Nr. x-1107113040
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises. Artikel-Nr. 9781107113046
Anzahl: 1 verfügbar