All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Bertrand S. Clarke is Chair of the Department of Statistics at the University of Nebraska, Lincoln. His research focuses on predictive statistics and statistical methodology in genomic data. He is a fellow of the American Statistical Association, serves as editor or associate editor for three journals, and has published numerous papers in several statistical fields as well as a book on data mining and machine learning.
Jennifer Clarke is Professor of Food Science and Technology, Professor of Statistics, and Director of the Quantitative Life Sciences Initiative at the University of Nebraska, Lincoln. Her current interests include statistical methodology for metagenomics and prediction, statistical computation, and multitype data analysis. She serves on the steering committee of the Midwest Big Data Hub and is co-PI on an award from the NSF focused on data challenges in digital agriculture.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,73 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 10,17 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Prior Books Ltd, Cheltenham, Vereinigtes Königreich
Hardcover. Zustand: Like New. First Edition. Hardback book in nearly new condition with just a small publisher's 'damaged' stamp; even so not showing any defects, no splits, no cracks, no pen-marks, just some very minor surface rubbing. Contents are crisp, tight and fresh. Thus a never read book still in very presentable condition now offered for sale at a sensible price. Artikel-Nr. 202875
Anzahl: 1 verfügbar
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Very Good. Artikel-Nr. mon0003661313
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 370417168
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781107028289_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies. Artikel-Nr. 9781107028289
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 652 pages. 10.00x7.50x1.75 inches. In Stock. Artikel-Nr. x-1107028280
Anzahl: 2 verfügbar