With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production.
Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many components as possible, and making the process fast and repeatable, your pipeline can scale to match your organization's needs.
You'll learn how to provide rapid business value while answering dynamic MLOps requirements. This book will help you:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Yaron Haviv is a serial entrepreneur who has been applying his deep technological experience in data, cloud, AI and networking to leading startups and enterprise companies since the late 1990s. As the co-founder and CTO of Iguazio, Yaron drives the strategy for the company's data science platform and leads the shift towards real- time AI. He also initiated and built Nuclio, a leading open source serverless platform with over 4,000 Github stars and MLRun, Iguazio's open source MLOps orchestration framework. Noah Gift is the founder of Pragmatic A.I. Labs. Noah Gift lectures at MSDS, at Northwestern, Duke MIDS Graduate Data Science Program, the Graduate Data Science program at UC Berkeley, the UC Davis Graduate School of Management MSBA program, UNC Charlotte Data Science Initiative and University of Tennessee (as part of the Tennessee Digital Jobs Factory). He teaches and designs graduate machine learning, MLOps, A.I., Data Science courses, and consulting on Machine Learning and Cloud Architecture for students and faculty. These responsibilities include leading a multi-cloud certification initiative for students
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,57 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WO-9781098136581
Anzahl: 15 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781098136581_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production. Artikel-Nr. 9781098136581
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 350 pages. 9.19x7.00x0.78 inches. In Stock. Artikel-Nr. x-1098136586
Anzahl: 2 verfügbar