Verwandte Artikel zu Linear and Generalized Linear Mixed Models and Their...

Linear and Generalized Linear Mixed Models and Their Applications (Springer Series in Statistics) - Softcover

 
9781071612842: Linear and Generalized Linear Mixed Models and Their Applications (Springer Series in Statistics)

Inhaltsangabe


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jiming Jiang is Professor of Statistics and a former Director of Statistical Laboratory at the University of California, Davis. He is a prominent researcher in the fields of mixed effects models, small area estimation, model selection, and statistical genetics. He is the author of Large Sample Techniques for Statistics (Springer 2010), Robust Mixed Model Analysis (2019), Asymptotic Analysis of Mixed Effects Models: Theory, Applications, and Open Problems (2017), and The Fence Methods (with T. Nguyen, 2016). He has been editorial board member of The Annals of Statistics and Journal of the American Statistical Association, among others. He is a Fellow of the American Association for the Advancement of Science, the American Statistical Association, and the Institute of Mathematical Statistics; an elected member of the International Statistical Institute; and a Yangtze River Scholar (Chaired Professor, 2017-2020).

Thuan Nguyen is Associate Professor of Biostatistics in the School of Public Health at Oregon Health & Science University, where she teaches and advises graduate students. She is an active researcher in the field of biostatistics, specializing in the analysis of longitudinal data and statistical genetics, as well as small area estimation. She is the coauthor of The Fence Methods (with J. Jiang 2016).



Von der hinteren Coverseite

Now in its second edition, this book covers two major classes of mixed effects models--linear mixed models and generalized linear mixed models--and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics.

This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduatecourses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2022
  • ISBN 10 1071612840
  • ISBN 13 9781071612842
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten360
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781071612811: Linear and Generalized Linear Mixed Models and Their Applications (Springer Series in Statistics)

Vorgestellte Ausgabe

ISBN 10:  1071612816 ISBN 13:  9781071612811
Verlag: Springer, 2021
Hardcover

Suchergebnisse für Linear and Generalized Linear Mixed Models and Their...

Foto des Verkäufers

Thuan Nguyen
ISBN 10: 1071612840 ISBN 13: 9781071612842
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Now in its second edition, this book covers two major classes of mixed effects models-linear mixed models and generalized linear mixed models-and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics. This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra. Artikel-Nr. 9781071612842

Verkäufer kontaktieren

Neu kaufen

EUR 132,72
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jiang, Jiming; Nguyen, Thuan
Verlag: Springer, 2022
ISBN 10: 1071612840 ISBN 13: 9781071612842
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781071612842_new

Verkäufer kontaktieren

Neu kaufen

EUR 128,07
Währung umrechnen
Versand: EUR 5,93
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb