Verwandte Artikel zu Model-Based Clustering, Classification, and Density...

Model-Based Clustering, Classification, and Density Estimation Using mclust in R (Chapman & Hall/CRC The R Series) - Softcover

 
9781032234953: Model-Based Clustering, Classification, and Density Estimation Using mclust in R (Chapman & Hall/CRC The R Series)

Inhaltsangabe

Model-Based Clustering, Classification, and Denisty Estimation Using mclust in R

Model-based clustering and classification methods provide a systematic statistical approach to clustering, classification, and density estimation via mixture modeling. The model-based framework allows the problems of choosing or developing an appropriate clustering or classification method to be understood within the context of statistical modeling. The mclust package for the statistical environment R is a widely adopted platform implementing these model-based strategies. The package includes both summary and visual functionality, complementing procedures for estimating and choosing models.

Key features of the book:

  • An introduction to the model-based approach and the mclust R package
  • A detailed description of mclust and the underlying modeling strategies
  • An extensive set of examples, color plots, and figures along with the R code for reproducing them
  • Supported by a companion website, including the R code to reproduce the examples and figures presented in the book, errata, and other supplementary material

Model-Based Clustering, Classification, and Density Estimation Using mclust in R is accessible to quantitatively trained students and researchers with a basic understanding of statistical methods, including inference and computing. In addition to serving as a reference manual for mclust, the book will be particularly useful to those wishing to employ these model-based techniques in research or applications in statistics, data science, clinical research, social science, and many other disciplines.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Luca ScruccaAssociate Professor of Statistics at Università degli Studi di Perugia, his research interests include: mixture models, model-based clustering and classification, statistical learning, dimension reduction methods, genetic and evolutionary algorithms. He is currently Associate Editor for the Journal of Statistical Software and Statistics and Computing. He has developed and he is the maintainer of several high profile R packages available on The Comprehensive R Archive Network (CRAN).

Chris FraleyMost recently a lead research staff member at Tableau, she previously held research positions in Statistics at the University of Washington and at Insightful from its early days as Statistical Sciences. She has contributed to computational methods in a number of areas of applied statistics, and is the principal author of several widely-used R packages. She was the originator (at Statistical Sciences) of numerical functions such as nlminb that have long been available in the R core stats package.

T. Brendan MurphyProfessor of Statistics at University College Dublin, his research interests include: model-based clustering, classification, network modeling and latent variable modeling. He is interested in applications in social science, political science, medicine, food science and biology. He served as Associate Editor for the journal Statistics and Computing, he is currently Editor for the Annals of Applied Statistics and Associate Editor for Statistical Analysis and Data Mining.

Adrian Raftery
Boeing International Professor of Statistics and Sociology, and Adjunct Professor of Atmospheric Sciences at the University of Washington, Seattle. He is also a faculty affiliate of the Center for Statistics and the Social Sciences and the Center for Studies in Demography and Ecology at University of Washington. He was one of the founding researchers in model-based clustering, having published in the area since 1984. His research interests include: model-based clustering, Bayesian statistics, social network analysis and statistical demography. He is interested in applications in social, environmental, biological and health sciences. He is a member of the U.S. National Academy of Sciences and was identified by Thomson-Reuter as the most cited researcher in mathematics in the world for the decade 1995–-2005. He served as Editor of the Journal of the American Statistical Association (JASA).

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagChapman and Hall/CRC
  • Erscheinungsdatum2023
  • ISBN 10 1032234954
  • ISBN 13 9781032234953
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten268
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781032234960: Model-Based Clustering, Classification, and Density Estimation Using mclust in R (Chapman & Hall/CRC The R Series)

Vorgestellte Ausgabe

ISBN 10:  1032234962 ISBN 13:  9781032234960
Verlag: Chapman and Hall/CRC, 2023
Hardcover

Suchergebnisse für Model-Based Clustering, Classification, and Density...

Foto des Verkäufers

Luca Scrucca|Chris Fraley|T. Brendan Murphy|Adrian E. Raftery
Verlag: CRC Press, 2023
ISBN 10: 1032234954 ISBN 13: 9781032234953
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Artikel-Nr. 780207472

Verkäufer kontaktieren

Neu kaufen

EUR 65,56
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Luca Scrucca
ISBN 10: 1032234954 ISBN 13: 9781032234953
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Model-based clustering and classification methods provide a systematic statistical approach to clustering, classification, and density estimation via mixture modeling. The model-based framework allows the problems of choosing or developing methods to be understood within the context of statistical modeling. Artikel-Nr. 9781032234953

Verkäufer kontaktieren

Neu kaufen

EUR 87,70
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Scrucca, Luca; Fraley, Chris; Murphy, T. Brendan; Raftery, Adrian E.
Verlag: Chapman and Hall/CRC, 2023
ISBN 10: 1032234954 ISBN 13: 9781032234953
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781032234953_new

Verkäufer kontaktieren

Neu kaufen

EUR 84,12
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Scrucca, Luca/ Fraley, Chris/ Murphy, T. Brendan/ Raftery, Adrian E.
Verlag: Chapman & Hall, 2023
ISBN 10: 1032234954 ISBN 13: 9781032234953
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 288 pages. 9.19x6.13x0.55 inches. In Stock. Artikel-Nr. x-1032234954

Verkäufer kontaktieren

Neu kaufen

EUR 102,77
Währung umrechnen
Versand: EUR 11,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb