Innovative Learning Analytics for Evaluating Instruction: A Big Data Roadmap to Effective Online Learning - Hardcover

Frick, Theodore W.; Myers, Rodney D.; Dagli, Cesur; Barrett, Andrew F.

 
9781032000183: Innovative Learning Analytics for Evaluating Instruction: A Big Data Roadmap to Effective Online Learning

Inhaltsangabe

Innovative Learning Analytics for Evaluating Instruction covers the application of a forward-thinking research methodology that uses big data to evaluate the effectiveness of online instruction. Analysis of Patterns in Time (APT) is a practical analytic approach that finds meaningful patterns in massive data sets, capturing temporal maps of students’ learning journeys by combining qualitative and quantitative methods. Offering conceptual and research overviews, design principles, historical examples, and more, this book demonstrates how APT can yield strong, easily generalizable empirical evidence through big data; help students succeed in their learning journeys; and document the extraordinary effectiveness of First Principles of Instruction. It is an ideal resource for faculty and professionals in instructional design, learning engineering, online learning, program evaluation, and research methods.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Theodore W. Frick is Professor Emeritus in the Department of Instructional Systems Technology in the School of Education at Indiana University Bloomington, USA.

Rodney D. Myers is Instructional Consultant in the School of Education at Indiana University Bloomington, USA.

Cesur Dagli is Research Analyst in the Office of Analytics & Institutional Effectiveness at Virginia Polytechnic Institute and State University, USA.

Andrew F. Barrett is Co-founder of ScaleLearning, Inc. and leads the Learning Technology team at Shopify, Inc., Canada

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9781032077352: Innovative Learning Analytics for Evaluating Instruction: A Big Data Roadmap to Effective Online Learning

Vorgestellte Ausgabe

ISBN 10:  1032077352 ISBN 13:  9781032077352
Verlag: Routledge, 2024
Softcover