Extracting the latent underlying structures of complex nonlinear local and nonlocal flows is essential for their analysis and modeling. In this Element the authors attempt to provide a consistent framework through Koopman theory and its related popular discrete approximation - dynamic mode decomposition (DMD). They investigate the conditions to perform appropriate linearization, dimensionality reduction and representation of flows in a highly general setting. The essential elements of this framework are Koopman eigenfunctions (KEFs) for which existence conditions are formulated. This is done by viewing the dynamic as a curve in state-space. These conditions lay the foundations for system reconstruction, global controllability, and observability for nonlinear dynamics. They examine the limitations of DMD through the analysis of Koopman theory and propose a new mode decomposition technique based on the typical time profile of the dynamics.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,38 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 13,71 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Good. Artikel-Nr. mon0003787700
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781009323857_new
Anzahl: 3 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2023. 1st Edition. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781009323857
Anzahl: 3 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781009323857
Anzahl: 3 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Extracting the latent underlying structures of complex nonlinear local and nonlocal flows is essential for their analysis and modeling. In this Element the authors attempt to provide a consistent framework through Koopman theory and its related popular discrete approximation - dynamic mode decomposition (DMD). They investigate the conditions to perform appropriate linearization, dimensionality reduction and representation of flows in a highly general setting. The essential elements of this framework are Koopman eigenfunctions (KEFs) for which existence conditions are formulated. This is done by viewing the dynamic as a curve in state-space. These conditions lay the foundations for system reconstruction, global controllability, and observability for nonlinear dynamics. They examine the limitations of DMD through the analysis of Koopman theory and propose a new mode decomposition technique based on the typical time profile of the dynamics. Artikel-Nr. 9781009323857
Anzahl: 2 verfügbar