Verwandte Artikel zu Machine Learning for Experiments in the Social Sciences...

Machine Learning for Experiments in the Social Sciences (Elements in Experimental Political Science) - Softcover

 
9781009168229: Machine Learning for Experiments in the Social Sciences (Elements in Experimental Political Science)

Inhaltsangabe

Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. However, applications of machine learning in causal inference are increasingly prevalent. This Element provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data. We show how machine learning can be useful for conducting robust causal inference and provide a theoretical foundation researchers can use to understand and apply new methods in this rapidly developing field. We then demonstrate two specific methods – the prediction rule ensemble and the causal random forest – for characterizing treatment effect heterogeneity in survey experiments and testing the extent to which such heterogeneity is robust to out-of-sample prediction. We conclude by discussing limitations and tradeoffs of such methods, while directing readers to additional related methods available on the Comprehensive R Archive Network (CRAN).

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
This book may be an ex-library...
Diesen Artikel anzeigen

EUR 42,68 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Machine Learning for Experiments in the Social Sciences...

Foto des Verkäufers

Jon Green
ISBN 10: 1009168223 ISBN 13: 9781009168229
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - 'Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. However, applications of machine learning in causal inference are increasingly prevalent. This Element provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data. We show how machine learning can be useful for conducting robust causal inference and provide a theoretical foundation researchers can use to understand and apply new methods in this rapidly developing field. We then demonstrate two specific methods - the prediction rule ensemble and the causal random forest - for characterizing treatment effect heterogeneity in survey experiments and testing the extent to which such heterogeneity is robust to out-of-sample prediction. We conclude by discussing the limitations and tradeoffs of such methods, while directing readers to additional related methods available on the Comprehensive R Archive Network (CRAN)'--. Artikel-Nr. 9781009168229

Verkäufer kontaktieren

Neu kaufen

EUR 32,38
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Green, Jon
ISBN 10: 1009168223 ISBN 13: 9781009168229
Gebraucht paperback

Anbieter: Lady BookHouse, Belmont, MA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: As New. This book may be an ex-library item. Artikel-Nr. SST01252

Verkäufer kontaktieren

Gebraucht kaufen

EUR 17,17
Währung umrechnen
Versand: EUR 42,68
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb