This comprehensive text focuses on the homotopical technology in use at the forefront of modern algebraic topology. Following on from a standard introductory algebraic topology sequence, it will provide students with a comprehensive background in spectra and structured ring spectra. Each chapter is an extended tutorial by a leader in the field, offering the first really accessible treatment of the modern construction of the stable category in terms of both model categories of point-set diagram spectra and infinity-categories. It is one of the only textbook sources for operadic algebras, structured ring spectra, and Bousfield localization, which are now basic techniques in the field, and the book provides a rare expository treatment of spectral algebraic geometry. Together the contributors ― Emily Riehl, Daniel Dugger, Clark Barwick, Michael A. Mandell, Birgit Richter, Tyler Lawson, and Charles Rezk ― offer a complete, authoritative source to learn the foundations of this vibrant area.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Andrew J. Blumberg is Herbert and Florence Irving Professor of Cancer Data Research and Professor of Mathematics and Computer Science at Columbia University, New York.
Teena Gerhardt is an associate professor in the Department of Mathematics at Michigan State University.
Michael A. Hill is Professor of Mathematics at the University of California, Los Angeles.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,80 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781009123297_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'The modern era in homotopy theory began in the 1960s with the profound realization, first codified by Boardman in his construction of the stable category, that the category of spaces up to stable homotopy equivalence is equipped with a rich algebraic structure, formally similar to the derived category of a commutative ring R. For example, for pointed spaces the natural map from the categorical co-product to the categorical product becomes more and more connected as the pieces themselves become more and more connected'--. Artikel-Nr. 9781009123297
Anzahl: 1 verfügbar