Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material – including lecture videos per section, homeworks, data, and code in MATLAB®, Python, Julia, and R – available on databookuw.com.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Steven L. Brunton is the James B. Morrison Professor of Mechanical Engineering at the University of Washington and Associate Director of the NSF AI Institute in Dynamic Systems. He is also Adjunct Professor of Applied Mathematics and Computer Science and a Data-Science Fellow at the eScience Institute. His research merges data science and machine learning with dynamical systems and control, with applications in fluid dynamics, biolocomotion, optics, energy systems, and manufacturing. He is an author of three textbooks, and received the UW College of Engineering Teaching award, the Army and Air Force Young Investigator Program (YIP) awards, and the Presidential Early Career Award for Scientists and Engineers (PECASE) award.
J. Nathan Kutz is the Robert Bolles and Yasuko Endo Professor of Applied Mathematics at the University of Washington and Director of the NSF AI Institute in Dynamic Systems. He is also Adjunct Professor of Electrical and Computer Engineering, Mechanical Engineering, and Physics and Senior Data-Science Fellow at the eScience Institute. His research interests lie at the intersection of dynamical systems and machine learning. He is an author of three textbooks and has received the Applied Mathematics Boeing Award of Excellence in Teaching and an NSF CAREER award.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,15 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Data-driven discovery is revolutionizing how we model, predict, and control complex systems. This text integrates emerging machine learning and data science methods for engineering and science communities. Now with Python and MATLAB (R), new chapters on rei. Artikel-Nr. 549119526
Anzahl: 3 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: Used - Good. Used Book. Shipped from UK. Established seller since 2000. Artikel-Nr. P2-9781009098489
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FM-9781009098489
Anzahl: 15 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware. Artikel-Nr. 9781009098489
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781009098489_new
Anzahl: 10 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2nd edition. 550 pages. 10.00x7.00x1.25 inches. In Stock. Artikel-Nr. __1009098489
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2nd edition. 550 pages. 10.00x7.00x1.25 inches. In Stock. Artikel-Nr. x-1009098489
Anzahl: 2 verfügbar