Learn Python starting from the very basics all the way to numerical and symbolic math, quantitative analysis, and beyond.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
John M. Stewart was Emeritus Reader in Gravitational Physics at the University of Cambridge, and a Life Fellow at King's College, Cambridge before his death in 2016. He was the author of 'Non-equilibrium Relativistic Kinetic Theory (Springer, 1971) and 'Advanced General Relativity' (Cambridge, 1991), and he translated and edited Hans Stephani's 'General Relativity' (Cambridge, 1990).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 401359117
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. L2-9781009014809
Anzahl: 9 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2023. 3rd Revised ed. paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781009014809
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 3rd edition. 304 pages. 9.61x6.69x0.68 inches. In Stock. Artikel-Nr. x-1009014803
Anzahl: 2 verfügbar
Anbieter: Speedyhen, Hertfordshire, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781009014809
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The third edition of this practical introduction to Python has been thoroughly updated, with all code migrated to Jupyter not Elektronisches Buch. The not Elektronisches Buch are available online with executable versions of all of the book's content (and more). The text starts with a detailed introduction to the basics of the Python language, without assuming any prior knowledge. Building upon each other, the most important Python packages for numerical math (NumPy), symbolic math (SymPy), and plotting (Matplotlib) are introduced, with brand new chapters covering numerical methods (SciPy) and data handling (Pandas). Further new material includes guidelines for writing efficient Python code and publishing code for other users. Simple and concise code examples, revised for compatibility with Python 3, guide the reader and support the learning process throughout the book. Readers from all of the quantitative sciences, whatever their background, will be able to quickly acquire the skills needed for using Python effectively. Artikel-Nr. 9781009014809
Anzahl: 1 verfügbar