The human brain represents about 2% of the body weight, yet it accounts for approximately 20% of aerobic metabolism. This high dependency on energy-consuming processes is mainly caused by the active transport of ions, which is necessary to compensate for the transmembrane ion currents that are part ofthe complex signaling processes in the brain. Ninety-five percent ofthe brain's ATP is derived from mitochondrial oxidative phosphorylation. Since that organ' s storage capacity for oxygen is minimal, any interruption of oxygen delivery to brain cells willlead to changes in membrane excitability and, there fore, to disruption of neuronal signaling within seconds. It seems that mamma lian brain is especially vulnerable to such an interruption, since oxygen deprivation leads to activation of ion channel mechanisms in neurons that impair their communications. Thus, the function of the brain as a coordinator of vital homeostatic reflexes, and complex body reactions to external challenges, depends critically on the rate of oxygen delivery and oxygen consumption. Oxygen delivery depends on two variables described in the Fick relation ship: volume flow rate ofblood and the arterial oxygen content. A reduction in either of these two variables will have serious effects on vital brain func tions. Reduction of arterial blood flow to the brain can be caused by cardiac arrest, shock, carotid occlusion, Of hypotension (global ischemia). Oxygen content is progressively decreased in asphyxia (including drowning).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In Cerebral Ischemia: Molecular and Cellular Pathphysiology, Wolfgang Walz and a panel of leading authorities illuminate those cellular and molecular mechanisms brought into play during a stroke that lead to neuronal dysfunction. Such damaging factors as spreading depression waves and postischemic depolarization, cell swelling, calcium overload, and oxygen radicals leading to necrosis and apoptosis are described in detail. Also examined are the body's repair mechanisms involving altered gene expression that lead to trophic factor production and heat shock protein synthesis, as well as to astrogliosis and microgliosis. All factors are presented in relation to their therapeutic value and the possible treatment approaches that evolve from their interactions.
Cerebral Ischemia: Molecular and Cellular Pathophysiology offers clinicians, interested practitioners, and experimentalists alike a systematic evaluation of all the major biological systems that contribute to brain dysfunction after a vascular accident. Its unique focus on mechanisms and gene expression also provides fresh and powerful insights into the many novel therapeutic strategies and agents for stroke management emerging today.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,04 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
Hardback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Artikel-Nr. GOR012664789
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-83555
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: Used. pp. 292. Artikel-Nr. 18290426
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: Used. pp. 292 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Artikel-Nr. 7590319
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780896035409_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. The human brain represents about 2% of the body weight, yet it accounts for approximately 20% of aerobic metabolism. This high dependency on energy-consuming processes is mainly caused by the active transport of ions, which is necessary to compensate for th. Artikel-Nr. 458446250
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - The human brain represents about 2% of the body weight, yet it accounts for approximately 20% of aerobic metabolism. This high dependency on energy-consuming processes is mainly caused by the active transport of ions, which is necessary to compensate for the transmembrane ion currents that are part ofthe complex signaling processes in the brain. Ninety-five percent ofthe brain's ATP is derived from mitochondrial oxidative phosphorylation. Since that organ' s storage capacity for oxygen is minimal, any interruption of oxygen delivery to brain cells willlead to changes in membrane excitability and, there fore, to disruption of neuronal signaling within seconds. It seems that mamma lian brain is especially vulnerable to such an interruption, since oxygen deprivation leads to activation of ion channel mechanisms in neurons that impair their communications. Thus, the function of the brain as a coordinator of vital homeostatic reflexes, and complex body reactions to external challenges, depends critically on the rate of oxygen delivery and oxygen consumption. Oxygen delivery depends on two variables described in the Fick relation ship: volume flow rate ofblood and the arterial oxygen content. A reduction in either of these two variables will have serious effects on vital brain func tions. Reduction of arterial blood flow to the brain can be caused by cardiac arrest, shock, carotid occlusion, Of hypotension (global ischemia). Oxygen content is progressively decreased in asphyxia (including drowning). Artikel-Nr. 9780896035409
Anzahl: 2 verfügbar