Verwandte Artikel zu The Role of the Spectrum in the Cyclic Behavior of...

The Role of the Spectrum in the Cyclic Behavior of Composition Operators (Memoirs of the American Mathematical Society) - Softcover

 
9780821834329: The Role of the Spectrum in the Cyclic Behavior of Composition Operators (Memoirs of the American Mathematical Society)

Inhaltsangabe

A bounded operator $T$ acting on a Hilbert space $\mathcal H$ is called cyclic if there is a vector $x$ such that the linear span of the orbit $\{T^n x: n \geq 0 \}$ is dense in $\mathcal H$. If the scalar multiples of the orbit are dense, then $T$ is called supercyclic. Finally, if the orbit itself is dense, then $T$ is called hyper cyclic. We completely characterize the cyclicity, the supercyclicity and the hypercyclicity of scalar multiples of composition operators, whose symbols are linear fractional maps, acting on weighted Dirichlet spaces. Particular instances of these spaces are the Bergman space, the Hardy space, and the Dirichlet space.Thus, we complete earlier work on cyclicity of linear fractional composition operators on these spaces. In this way, we find exactly the spaces in which these composition operators fail to be cyclic, supercyclic or hyper cyclic. Consequently, we answer some open questions posed by Zorboska. In almost all the cases, the cut-off of cyclicity, supercyclicity or hypercyclicity of scalar multiples is determined by the spectrum. We will find that the Dirichlet space plays a critical role in the cut-off.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

A bounded operator $T$ acting on a Hilbert space $\mathcal H$ is called cyclic if there is a vector $x$ such that the linear span of the orbit $\{T^n x: n \geq 0 \}$ is dense in $\mathcal H$. If the scalar multiples of the orbit are dense, then $T$ is called supercyclic. Finally, if the orbit itself is dense, then $T$ is called hyper cyclic. We completely characterize the cyclicity, the supercyclicity and the hypercyclicity of scalar multiples of composition operators, whose symbols are linear fractional maps, acting on weighted Dirichlet spaces. Particular instances of these spaces are the Bergman space, the Hardy space, and the Dirichlet space.Thus, we complete earlier work on cyclicity of linear fractional composition operators on these spaces. In this way, we find exactly the spaces in which these composition operators fail to be cyclic, supercyclic or hyper cyclic. Consequently, we answer some open questions posed by Zorboska. In almost all the cases, the cut-off of cyclicity, supercyclicity or hypercyclicity of scalar multiples is determined by the spectrum. We will find that the Dirichlet space plays a critical role in the cut-off.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Ex-library with stamp and library-signature...
Diesen Artikel anzeigen

EUR 3,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für The Role of the Spectrum in the Cyclic Behavior of...

Foto des Verkäufers

Gallardo-Gutierrez, Eva A.; Montes-Rodriguez, Alfonso
ISBN 10: 0821834320 ISBN 13: 9780821834329
Gebraucht Softcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02546 9780821834329 Sprache: Englisch Gewicht in Gramm: 150. Artikel-Nr. 2488414

Verkäufer kontaktieren

Gebraucht kaufen

EUR 5,00
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb