Verwandte Artikel zu Introduction to $p$-adic Analytic Number Theory: v....

Introduction to $p$-adic Analytic Number Theory: v. 27 (AMS/IP Studies in Advanced Mathematics) - Hardcover

 
9780821832622: Introduction to $p$-adic Analytic Number Theory: v. 27 (AMS/IP Studies in Advanced Mathematics)

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

This book is an elementary introduction to $p$-adic analysis from the number theory perspective. With over 100 exercises, it will acquaint the non-expert with the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of $p$-adic $L$-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences.These congruences are then used to construct the $p$-adic analog of the Riemann zeta function and $p$-adic analogs of Dirichlet's $L$-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory. The book treats the subject informally, making the text accessible to non-experts. It would make a nice independent text for a course geared toward advanced undergraduates and beginning graduate students.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book is an elementary introduction to $p$-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of $p$-adic $L$-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the $p$-adic analog of the Riemann zeta function and $p$-adic analogs of Dirichlet's $L$-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory. The book treats the subject informally, making the text accessible to non-experts. It would make a nice independent text for a course geared toward advanced undergraduates through beginning graduate students.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagAmerican Mathematical Society
  • Erscheinungsdatum2002
  • ISBN 10 082183262X
  • ISBN 13 9780821832622
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten149
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9780821847749: Introduction to P-adic Analytic Number Theory (AMS/IP Studies in Advanced Mathematics)

Vorgestellte Ausgabe

ISBN 10:  0821847740 ISBN 13:  9780821847749
Verlag: American Mathematical Society, 2002
Softcover