Verwandte Artikel zu Loop Groups Discrete Versions Of Some Classical Integrable...

Loop Groups Discrete Versions Of Some Classical Integrable Systems And Rank 2 Extensions (Memoirs of the American Mathematical Society) - Softcover

 
9780821825402: Loop Groups Discrete Versions Of Some Classical Integrable Systems And Rank 2 Extensions (Memoirs of the American Mathematical Society)

Inhaltsangabe

The theory of classical R-matrices provides a unified approach to the understanding of most, if not all, known integrable systems. This work, which is suitable as a graduate textbook in the modern theory of integrable systems, presents an exposition of R-matrix theory by means of examples, some old, some new. In particular, the authors construct continuous versions of a variety of discrete systems of the type introduced recently by Moser and Vesclov. In the framework the authors establish, these discrete systems appear as time-one maps of integrable Hamiltonian flows on co-adjoint orbits of appropriate loop groups, which are in turn constructed from more primitive loop groups by means of classical R-matrix theory. Examples include the discrete Euler-Arnold top and the billiard ball problem in an elliptical region in n dimensions. Earlier results of Moser on rank 2 extensions of a fixed matrix can be incorporated into this framework, which implies in particular that many well-known integrable systems - such as the Neumann system, periodic Toda, geodesic flow on an ellipsoid, etc. - can also be ysed by this method.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The theory of classical R-matrices provides a unified approach to the understanding of most, if not all, known integrable systems. This work, which is suitable as a graduate textbook in the modern theory of integrable systems, presents an exposition of R-matrix theory by means of examples, some old, some new. In particular, the authors construct continuous versions of a variety of discrete systems of the type introduced recently by Moser and Vesclov. In the framework the authors establish, these discrete systems appear as time-one maps of integrable Hamiltonian flows on co-adjoint orbits of appropriate loop groups, which are in turn constructed from more primitive loop groups by means of classical R-matrix theory. Examples include the discrete Euler-Arnold top and the billiard ball problem in an elliptical region in n dimensions. Earlier results of Moser on rank 2 extensions of a fixed matrix can be incorporated into this framework, which implies in particular that many well-known integrable systems - such as the Neumann system, periodic Toda, geodesic flow on an ellipsoid, etc. - can also be analysed by this method.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Ehem. Bibliotheksexemplar mit Signatur...
Diesen Artikel anzeigen

EUR 16,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Loop Groups Discrete Versions Of Some Classical Integrable...

Foto des Verkäufers

Deift, Percy; Li, Luen-Chau; Tomei, Carlos
ISBN 10: 0821825402 ISBN 13: 9780821825402
Gebraucht Softcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-00848 9780821825402 Sprache: Englisch Gewicht in Gramm: 150. Artikel-Nr. 2484687

Verkäufer kontaktieren

Gebraucht kaufen

EUR 8,84
Währung umrechnen
Versand: EUR 16,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb