Let $\Omega$ be a bounded finitely connected region in the complex plane, whose boundary $\Gamma$ consists of disjoint, analytic, simple closed curves. The author considers linear bounded operators on a Hilbert space $H$ having $\overline \Omega$ as spectral set, and no normal summand with spectrum in $\gamma$. For each operator satisfying these properties, the author defines a weak$^*$-continuous functional calculus representation on the Banach algebra of bounded analytic functions on $\Omega$. An operator is said to be of class $C_0$ if the associated functional calculus has a non-trivial kernel. In this work, the author studies operators of class $C_0$, providing a complete classification into quasisimilarity classes, which is analogous to the case of the unit disk.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Just list for NBB purposes.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. 52 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05525 9780821806265 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2491779
Anzahl: 1 verfügbar