Verwandte Artikel zu The Pullback Equation for Differential Forms: 83 (Progress...

The Pullback Equation for Differential Forms: 83 (Progress in Nonlinear Differential Equations and Their Applications) - Hardcover

 
9780817683122: The Pullback Equation for Differential Forms: 83 (Progress in Nonlinear Differential Equations and Their Applications)

Inhaltsangabe

Introduction.- Part I Exterior and Differential Forms.- Exterior Forms and the Notion of Divisibility.- Differential Forms.- Dimension Reduction.- Part II Hodge-Morrey Decomposition and Poincaré Lemma.- An Identity Involving Exterior Derivatives and Gaffney Inequality.- The Hodge-Morrey Decomposition.- First-Order Elliptic Systems of Cauchy-Riemann Type.- Poincaré Lemma.- The Equation div u = f.- Part III The Case k = n.- The Case f × g > 0.- The Case Without Sign Hypothesis on f.- Part IV The Case 0 ≤ k n-1.- General Considerations on the Flow Method.- The Cases k = 0 and k = 1.- The Case k = 2.- The Case 3 ≤ kn-1.- Part V Hölder Spaces.- Hölder Continuous Functions.- Part VI Appendix.- Necessary Conditions.- An Abstract Fixed Point Theorem.- Degree Theory.- References.- Further Reading.- Notations.- Index.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Csato, Dacorogna, and Kneuss teach at Ecole Polytechnique Fédérale de Lausanne in Switzerland.

Von der hinteren Coverseite

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map f so that it satisfies the pullback equation: f*(g) = f.

In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 = k = n–1. The present monograph provides the first comprehensive study of the equation.

The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1= k = n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation.

The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagBirkhäuser
  • Erscheinungsdatum2011
  • ISBN 10 0817683127
  • ISBN 13 9780817683122
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten450
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780817683146: The Pullback Equation for Differential Forms

Vorgestellte Ausgabe

ISBN 10:  0817683143 ISBN 13:  9780817683146
Verlag: Birkhäuser, 2011
Softcover

Suchergebnisse für The Pullback Equation for Differential Forms: 83 (Progress...

Foto des Verkäufers

Gyula Csató|Bernard Dacorogna|Olivier Kneuss
Verlag: Birkhäuser Boston, 2011
ISBN 10: 0817683127 ISBN 13: 9780817683122
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 5975977

Verkäufer kontaktieren

Neu kaufen

EUR 118,61
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Gyula Csató
ISBN 10: 0817683127 ISBN 13: 9780817683122
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map ¿ so that it satisfies the pullback equation: ¿\*(g) = f.In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ¿ k ¿ n¿1. The present monograph provides thefirst comprehensive study of the equation.The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge¿Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1¿ k ¿ n¿1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation.The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serveas a valuable reference for researchers or a supplemental text for graduate courses or seminars.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 448 pp. Englisch. Artikel-Nr. 9780817683122

Verkäufer kontaktieren

Neu kaufen

EUR 139,09
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Gyula Csató
ISBN 10: 0817683127 ISBN 13: 9780817683122
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map phi so that it satisfies the pullback equation: phi\*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 k n-1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge-Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1 k n-1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serveas a valuable reference for researchers or a supplemental text for graduate courses or seminars. Artikel-Nr. 9780817683122

Verkäufer kontaktieren

Neu kaufen

EUR 146,98
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Csató, Gyula; Dacorogna, Bernard; Kneuss, Olivier
Verlag: Birkhäuser, 2011
ISBN 10: 0817683127 ISBN 13: 9780817683122
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780817683122_new

Verkäufer kontaktieren

Neu kaufen

EUR 142,65
Währung umrechnen
Versand: EUR 5,82
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Csato, Gyula/ Dacorogna, Bernard/ Kneuss, Olivier
Verlag: Birkhauser, 2011
ISBN 10: 0817683127 ISBN 13: 9780817683122
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 447 pages. 9.25x6.25x1.25 inches. In Stock. Artikel-Nr. x-0817683127

Verkäufer kontaktieren

Neu kaufen

EUR 198,06
Währung umrechnen
Versand: EUR 11,70
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb