Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry.
This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties.
This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems.
Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Böhning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Rationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. These advances have led to many interdisciplinary applications of algebraic geometry.
This comprehensive text consists of surveys and research papers by leading specialists in the field. Topics discussed include the rationality of quotient spaces, cohomological invariants of finite groups of Lie type, rationality of moduli spaces of curves, and rational points on algebraic varieties.
This volume is intended for research mathematicians and graduate students interested in algebraic geometry, and specifically in rationality problems.
I. Bauer
C. Böhning
F. Bogomolov
F. Catanese
I. Cheltsov
N. Hoffmann
S.-J. Hu
M.-C. Kang
L. Katzarkov
B. Kunyavskii
A. Kuznetsov
J. Park
T. Petrov
Yu. G. Prokhorov
A.V. Pukhlikov
Yu. Tschinkel
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 105,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 13,77 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780817649333_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 5659084/12
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. This volume provides an overview of rationality problems by surveying research from leading experts in the field. Readers will find coverage of rationality problems from both cohomological and algebraic geometry perspectives. Editor(s): Bogomolov, Fedor; Tschinkel, Yuri. Series: Progress in Mathematics. Num Pages: 314 pages, 47 black & white illustrations, 38 black & white tables, biography. BIC Classification: PBG; PBMW. Category: (P) Professional & Vocational. Dimension: 240 x 160 x 24. Weight in Grams: 630. . 2009. Hardback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780817649333
Anzahl: 15 verfügbar