This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis.
Key features of Geometric Integration Theory:
* Includes topics on the deformation theorem, the area and coarea formulas, the compactness theorem, the slicing theorem and applications to minimal surfaces
* Applies techniques to complex geometry, partial differential equations, harmonic analysis, differential geometry, and many other parts of mathematics
* Provides considerable background material for the student
Motivating key ideas with examples and figures, Geometric Integration Theory is a comprehensive introduction ideal for use in the classroom and for self-study. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for graduate students and researchers.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 20,37 für den Versand von Finnland nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Moraine Books, Ruovesi, Finnland
Hardcover. Zustand: Near Fine. 1st Edition. Text in English. 339 pp. Light rubbing on the covers. No markings. This textbook introduces geometric measure theory through the notion of currents, Currents-continuous linear functionals on spaces of differential forms-are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis Key features of Geometric Integration Theory: Includes topics on the deformation theorem, the area and coarea formulas, the compactness theorem, the slicing theorem and applications to minimal surfaces Applies techniques to complex geometry, partial differential equations, harmonic analysis, differential geometry. and many other parts of mathematics Provides considerable background material for the student Motivating key ideas with examples and figures, Geometric Integration Theory is a comprehensive introduction ideal for use in the classroom as well as for selfstudy. The exposition demands minimal background is selfcontained and accessible, and thus is ideal for graduate students and researchers. Artikel-Nr. 3451
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Self-contained, inclusive, and accessible for both the graduate students and researchersMotivates the key ideas with examples and figuresIncludes considerable background material and complete proofsThis textbook introduces ge. Artikel-Nr. 458444897
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Artikel-Nr. ria9780817646769_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Geometric measure theory has roots going back to ancient Greek mathematics, for considerations of the isoperimetric problem (to nd the planar domain of given perimeter having greatest area) led naturally to questions about spatial regions and boundaries. In more modern times, the Plateau problem is considered to be the wellspring of questions in geometric measure theory. Named in honor of the nineteenth century Belgian physicist Joseph Plateau, who studied surface tension phenomena in general, andsoap lmsandsoapbubblesinparticular,thequestion(initsoriginalformulation) was to show that a xed, simple, closed curve in three-space will bound a surface of the type of a disk and having minimal area. Further, one wishes to study uniqueness for this minimal surface, and also to determine its other properties. Jesse Douglas solved the original Plateau problem by considering the minimal surfacetobeaharmonicmapping(whichoneseesbystudyingtheDirichl etintegral). For this work he was awarded the Fields Medal in 1936. Unfortunately, Douglas's methods do not adapt well to higher dimensions, so it is desirable to nd other techniques with broader applicability. Enter the theory of currents. Currents are continuous linear functionals on spaces of differential forms. Artikel-Nr. 9780817646769
Anzahl: 2 verfügbar