This book studies the foundations of the theory of linear and nonlinear forms in single and multiple random variables including the single and multiple random series and stochastic integrals, both Gaussian and non-Gaussian. This subject is intimately connected with a number of classical problems of probability theory such as the summation of independent random variables, martingale theory, and Wiener's theory of polynomial chaos. The book contains a number of older results as well as more recent, or previously unpublished, results. The emphasis is on domination principles for comparison of different sequences of random variables and on decoupling techniques. These tools prove very useful in many areas ofprobability and analysis, and the book contains only their selected applications. On the other hand, the use of the Fourier transform - another classical, but limiting, tool in probability theory - has been practically eliminated. The book is addressed to researchers and graduate students in prob ability theory, stochastic processes and theoretical statistics, as well as in several areas oftheoretical physics and engineering. Although the ex position is conducted - as much as is possible - for random variables with values in general Banach spaces, we strive to avoid methods that would depend on the intricate geometric properties of normed spaces. As a result, it is possible to read the book in its entirety assuming that all the Banach spaces are simply finite dimensional Euclidean spaces.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book studies the foundations of the theory of linear and nonlinear forms in single and multiple random variables including the single and multiple random series and stochastic integrals, both Gaussian and non-Gaussian. This subject is intimately connected with a number of classical problems of probability theory such as the summation of independent random variables, martingale theory, and Wiener's theory of polynomial chaos. The book contains a number of older results as well as more recent, or previously unpublished, results. The emphasis is on domination principles for comparison of different sequences of random variables and on decoupling techniques. These tools prove very useful in many areas ofprobability and analysis, and the book contains only their selected applications. On the other hand, the use of the Fourier transform - another classical, but limiting, tool in probability theory - has been practically eliminated. The book is addressed to researchers and graduate students in prob ability theory, stochastic processes and theoretical statistics, as well as in several areas oftheoretical physics and engineering. Although the ex position is conducted - as much as is possible - for random variables with values in general Banach spaces, we strive to avoid methods that would depend on the intricate geometric properties of normed spaces. As a result, it is possible to read the book in its entirety assuming that all the Banach spaces are simply finite dimensional Euclidean spaces.
This volume studies the foundations of the theory of linear and nonlinear forms in single and multiple random variables including single and multiple random series and stochastic integrals, both Gaussian and non-Gaussian. Its topic is intimately connected with a number of classical problems of probability theory such as the summation of independent random variables, martingale theory and the Weiner theory of polynomial chaos, as well as with several application areas such as stochastic analysis, limit theorems for symmetric statistics, representation of random fields, partial differential equations and quantum field theory. The emphasis is on domination principles for comparison of sequences of random variables and on decoupling techniques. The volume is intended for researchers and graduate students in probability theory, stochastic processes, theoretical statistics and in several areas of theoretical physics and engineering.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 105,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 13,84 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780817641986_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 1052733/202
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book studies the foundations of the theory of linear and nonlinear forms in single and multiple random variables including the single and multiple random series and stochastic integrals, both Gaussian and non-Gaussian. This subject is intimately connected with a number of classical problems of probability theory such as the summation of independent random variables, martingale theory, and Wiener's theory of polynomial chaos. The book contains a number of older results as well as more recent, or previously unpublished, results. The emphasis is on domination principles for comparison of different sequences of random variables and on decoupling techniques. These tools prove very useful in many areas ofprobability and analysis, and the book contains only their selected applications. On the other hand, the use of the Fourier transform - another classical, but limiting, tool in probability theory - has been practically eliminated. The book is addressed to researchers and graduate students in prob ability theory, stochastic processes and theoretical statistics, as well as in several areas oftheoretical physics and engineering. Although the ex position is conducted - as much as is possible - for random variables with values in general Banach spaces, we strive to avoid methods that would depend on the intricate geometric properties of normed spaces. As a result, it is possible to read the book in its entirety assuming that all the Banach spaces are simply finite dimensional Euclidean spaces. Artikel-Nr. 9780817641986
Anzahl: 1 verfügbar