Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances
Presents new results and applications to diverse fields such as geometry, number theory, and analysis
Contributors are leading experts in their respective fields
Will be of interest to both pure and applied mathematicians
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitz's proof of the isoperimetric inequality using Fourier series.
This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include:
* the geometric properties of convex bodies
* the study of Radon transforms
* the geometry of numbers
* the study of translational tilings using Fourier analysis
* irregularities in distributions
* Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis
* restriction problems for the Fourier transform
The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way.
Contributors: J. Beck, C. Berenstein, W.W.L. Chen, B. Green, H. Groemer, A. Koldobsky, M. Kolountzakis, A. Magyar, A.N. Podkorytov, B. Rubin, D. Ryabogin, T. Tao, G. Travaglini, A. Zvavitch
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 282 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Artikel-Nr. 7547302
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. viii, 268 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16726 9780817632632 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2480111
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-85799
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Editor(s): Brandolini, Luca; Colzani, Leonardo; Iosevich, Alex; Travaglini, Giancarlo. Series: Applied and Numerical Harmonic Analysis. BIC Classification: PBKF. Dimension: 235 x 155. Weight in Grams: 600. . 2004. 2004th Edition. hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780817632632
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. * Explores relationship between Fourier Analysis, convex geometry, and related areas in the past, study of this relationship has led to important mathematical advances* Presents new results and applications to diverse fields such as geometry, num. Artikel-Nr. 458444233
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitz s proof of the isoperimetric inequality using Fourier series. This unified, self-contained book presents both a broad overview of Fourier analysis and convexity, as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way. Artikel-Nr. 9780817632632
Anzahl: 2 verfügbar