Verwandte Artikel zu Finite Fields: Normal Bases and Completely Free Elements:...

Finite Fields: Normal Bases and Completely Free Elements: 390 (The Springer International Series in Engineering and Computer Science) - Hardcover

 
9780792398516: Finite Fields: Normal Bases and Completely Free Elements: 390 (The Springer International Series in Engineering and Computer Science)

Inhaltsangabe

Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed­ ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo­ rem, a classical result from field theory, stating that in every finite dimen­ sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor­ mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed­ ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo­ rem, a classical result from field theory, stating that in every finite dimen­ sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor­ mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.

Reseña del editor

The central topic of Finite Fields: Normal Bases and Completely Free Elements is the famous Normal Basis Theorem, a classical result from field theory. In the last two decades, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. At present, the algorithmic and explicit construction of such bases has become one of the major research topics in Finite Field Theory. Moreover, the search for such bases also led to a better theoretical understanding of the structure of finite fields.
In addition to interest in arbitrary normal bases, Finite Fields: Normal Bases and Completely Free Elements examines a special class of normal bases whose existence has only been settled more recently. The main problems considered in the present work are the characterization, the enumeration, and the explicit construction of completely free elements in arbitrary finite dimensional extensions over finite fields. Up to now, there is no work done stating whether the universal property of a completely free element can be used to accelerate arithmetic computations in finite fields. Therefore, the present work belongs to Constructive Algebra and constitutes a contribution to the theory of Finite Fields.
This book serves as an excellent reference for researchers in finite fields, and may be used as a text for advanced courses on the subject.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum1997
  • ISBN 10 0792398513
  • ISBN 13 9780792398516
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten188
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Gut
Zustand: Gut | Seiten: 171 | Sprache...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

EUR 5,87 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461378778: Finite Fields: Normal Bases and Completely Free Elements: 390 (The Springer International Series in Engineering and Computer Science)

Vorgestellte Ausgabe

ISBN 10:  146137877X ISBN 13:  9781461378778
Verlag: Springer, 2012
Softcover

Suchergebnisse für Finite Fields: Normal Bases and Completely Free Elements:...

Beispielbild für diese ISBN

Dirk Hachenberger
Verlag: SPRINGER NATURE, 1997
ISBN 10: 0792398513 ISBN 13: 9780792398516
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Gut. Zustand: Gut | Seiten: 171 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 3019904/203

Verkäufer kontaktieren

Gebraucht kaufen

EUR 112,63
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Hachenberger, Dirk
Verlag: Springer, 1997
ISBN 10: 0792398513 ISBN 13: 9780792398516
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780792398516_new

Verkäufer kontaktieren

Neu kaufen

EUR 169,04
Währung umrechnen
Versand: EUR 5,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Dirk Hachenberger
Verlag: Springer US, 1997
ISBN 10: 0792398513 ISBN 13: 9780792398516
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptograph. Artikel-Nr. 458444000

Verkäufer kontaktieren

Neu kaufen

EUR 178,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Dirk Hachenberger
Verlag: Springer Us Jan 1997, 1997
ISBN 10: 0792398513 ISBN 13: 9780792398516
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory. Artikel-Nr. 9780792398516

Verkäufer kontaktieren

Neu kaufen

EUR 247,94
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb