Designing VLSI systems represents a challenging task. It is a transfonnation among different specifications corresponding to different levels of design: abstraction, behavioral, stntctural and physical. The behavioral level describes the functionality of the design. It consists of two components; static and dynamic. The static component describes operations, whereas the dynamic component describes sequencing and timing. The structural level contains infonnation about components, control and connectivity. The physical level describes the constraints that should be imposed on the floor plan, the placement of components, and the geometry of the design. Constraints of area, speed and power are also applied at this level. To implement such multilevel transfonnation, a design methodology should be devised, taking into consideration the constraints, limitations and properties of each level. The mapping process between any of these domains is non-isomorphic. A single behavioral component may be transfonned into more than one structural component. Design methodologies are the most recent evolution in the design automation era, which started off with the introduction and subsequent usage of module generation especially for regular structures such as PLA's and memories. A design methodology should offer an integrated design system rather than a set of separate unrelated routines and tools. A general outline of a desired integrated design system is as follows: * Decide on a certain unified framework for all design levels. * Derive a design method based on this framework. * Create a design environment to implement this design method.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Designing VLSI systems represents a challenging task. It is a transfonnation among different specifications corresponding to different levels of design: abstraction, behavioral, stntctural and physical. The behavioral level describes the functionality of the design. It consists of two components; static and dynamic. The static component describes operations, whereas the dynamic component describes sequencing and timing. The structural level contains infonnation about components, control and connectivity. The physical level describes the constraints that should be imposed on the floor plan, the placement of components, and the geometry of the design. Constraints of area, speed and power are also applied at this level. To implement such multilevel transfonnation, a design methodology should be devised, taking into consideration the constraints, limitations and properties of each level. The mapping process between any of these domains is non-isomorphic. A single behavioral component may be transfonned into more than one structural component. Design methodologies are the most recent evolution in the design automation era, which started off with the introduction and subsequent usage of module generation especially for regular structures such as PLA's and memories. A design methodology should offer an integrated design system rather than a set of separate unrelated routines and tools. A general outline of a desired integrated design system is as follows: * Decide on a certain unified framework for all design levels. * Derive a design method based on this framework. * Create a design environment to implement this design method.
VLSI Design Methodologies for Digital Signal Processing Architectures is centered around a number of emerging issues in this area, including system integration, optimization, algorithm transformation, impact of applications, memory management and algorithm prototyping. The book stimulates the reader to get a head start, gain knowledge and participate in the rapidly evolving field of application specific design methodology for DSP architectures.
VLSI Design Methodologies for Digital Signal Processing Architectures is an excellent reference for researchers in both academia and industry. It may also be used as a text for advanced courses in application specific design, VLSI design methods, and silicon compilers.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 12,15 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: ThriftBooks-Dallas, Dallas, TX, USA
Hardcover. Zustand: Very Good. No Jacket. Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.9. Artikel-Nr. G0792394283I4N01
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,950grams, ISBN:0792394283. Artikel-Nr. 5834193
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780792394280_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Designing VLSI systems represents a challenging task. It is a transfonnation among different specifications corresponding to different levels of design: abstraction, behavioral, stntctural and physical. The behavioral level describes the functionality of the design. It consists of two components; static and dynamic. The static component describes operations, whereas the dynamic component describes sequencing and timing. The structural level contains infonnation about components, control and connectivity. The physical level describes the constraints that should be imposed on the floor plan, the placement of components, and the geometry of the design. Constraints of area, speed and power are also applied at this level. To implement such multilevel transfonnation, a design methodology should be devised, taking into consideration the constraints, limitations and properties of each level. The mapping process between any of these domains is non-isomorphic. A single behavioral component may be transfonned into more than one structural component. Design methodologies are the most recent evolution in the design automation era, which started off with the introduction and subsequent usage of module generation especially for regular structures such as PLA's and memories. A design methodology should offer an integrated design system rather than a set of separate unrelated routines and tools. A general outline of a desired integrated design system is as follows: \* Decide on a certain unified framework for all design levels. \* Derive a design method based on this framework. \* Create a design environment to implement this design method. Artikel-Nr. 9780792394280
Anzahl: 1 verfügbar