Advances in the semiconductor technology have enabled steady, exponential im provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Advances in the semiconductor technology have enabled steady, exponential im provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films.
The study of thermal phenomena in microdevices has attracted significant attention recently. The interdisciplinary nature of this topic, however, makes it very difficult for researchers to fully understand details of research results presented in journal articles. For many researchers intending to be active in this field, therefore, a more comprehensive treatment, complete with sufficient background information, is urgently needed.
Advances in semiconductor device technology render the thermal characterization and design of ICs increasingly more important. The present book discusses experimental and theoretical studies of heat transfer in transistors and interconnects. A novel optical thermometry technique captures temperature fields with high temporal and spatial failures in devices that are subjected to electrical overstress (EOS) and electrostatic discharge (ESD). Also reported are techniques for determining the thermal transport properties of dielectric passivation layers and ultra-thin silicon-on-insulator (SOI) layers. Theoretical analysis on the data yields insight into the dependence of thermal properties on film processing conditions. The techniques and data presented here will greatly aid the thermal engineering of interconnects and transistors.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-157210
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 132 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Artikel-Nr. 5279336
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Advances in the semiconductor technology have enabled steady, exponential im provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. Artikel-Nr. 9780792385912
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Discusses experimental and theoretical studies of heat transfer in transistors and interconnects. This book reports techniques for determining the thermal transport properties of dielectric passivation layers and ultra-thin silicon-on-insulator (SOI) layers. Series: Microsystems. Num Pages: 123 pages, biography. BIC Classification: TJFD5. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 156 x 9. Weight in Grams: 810. . 1999. Hardback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780792385912
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Advances in the semiconductor technology have enabled steady, exponential im provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films. Artikel-Nr. 9780792385912
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 3034083/202
Anzahl: 1 verfügbar