275p red hardback, pages clean and unmarked, binding firm, index, as new
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS · Mathematical representations or models for the noise sources. · Mathematical model or representation for the system that is under the in fluence of the noise sources.
The existence of electrical noise is basically due to the fact that electrical charge is not continuous but is carried in discrete amounts equal to the electron charge. Electrical noise represents a fundamental limit on the performance of electronic circuits and systems. With the explosive growth in the personal mobile communications market, the need for noise analysis/simulation techniques for nonlinear electronic circuits and systems has been re-emphasized.
Even though most of the signal processing is done in the digital domain, every wireless communication device has an analog front-end which is usually the bottleneck in the design of the whole system. The requirements for low-power operation and higher levels of integration create new challenges in the design of the analog signal processing subsystems of these mobile communication devices. The effect of noise on the performance of these inherently nonlinear analog circuits is becoming more and more significant.
Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems presents analysis, simulation and characterization techniques and behavioral models for noise in nonlinear electronic circuits and systems, along with practical examples. This book treats the problem within the framework of, and using techniques from, the probabilistic theory of stochastic processes and stochastic differential systems.
Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems will be of interest to RF/analog designers as well as engineers interested in stochastic modeling and simulation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 45,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 14,23 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Außen: verschmutzt. Innen: Seiten eingerissen, Seiten verschmutzt. | Seiten: 290 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 2556952/2
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780792380375_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS - Mathematical representations or models for the noise sources. - Mathematical model or representation for the system that is under the in fluence of the noise sources. Artikel-Nr. 9780792380375
Anzahl: 1 verfügbar