Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as `controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form.
Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-91662
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 348 Illus. Artikel-Nr. 5824931
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinea. Artikel-Nr. 458441701
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. Written in an analytic spirit, it begins with a survey of basic optimality conditions in nonlinear programming. Series: Applied Optimization. Num Pages: 344 pages, biography. BIC Classification: KJ; PBUD; PBW. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 235 x 155 x 20. Weight in Grams: 1470. . 2001. 2001st Edition. hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780792371397
Anzahl: 15 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as `controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis. Artikel-Nr. 9780792371397
Anzahl: 2 verfügbar