Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals.
Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation.
New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter theory, and fast filtering in the frequency domain.
The included CD-ROM can be played using any compact disc player to play the simulation results that are described in the text. When inserted into a computer, it furthermore gives Matlab implementations of the new algorithms along with audio data with which to experiment. This makes the book suited to researchers, engineers, and university students, who want to get acquainted with these emerging fields.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
'This book is clearly written and well organized. The author has spent considerable effort to present material in a clear and concise manner. This can be recommended for readers who are interested in a quick overview of basic concepts and acoustic application of blind signal separation and echo cancellation, and for the readers who are familiar with these applications, but who want to understand and use new algorithms that have been presented in the book.'
The Journal of the Acoustical Society of America, August (2002)
Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals.
Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation.
New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter theory, and fast filtering in the frequency domain.
The included CD-ROM can be played using any compact disc player to play the simulation results that are described in the text. When inserted into a computer, it furthermore gives Matlab implementations of the new algorithms along with audio data with which to experiment. This makes the book suited to researchers, engineers, and university students, who want to get acquainted with these emerging fields.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,55 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. 1st Edition. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Artikel-Nr. 15520228-20
Anzahl: 1 verfügbar
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Good. **FREE DOMESTIC SHIPPING until Monday, Sept. 22* 160 pp., hardcover, ex library, else text clean & binding tight. INCLUDES CD-ROM. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Artikel-Nr. ZB1291125
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals.Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation.New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter theory, and fast filtering in the frequency domain.The included CD-ROM can be played using any compact disc player to play the simulation results that are described in the text. When inserted into a computer, it furthermore gives Matlab implementations of the new algorithms along with audio data with which to experiment. This makes the book suited to researchers, engineers, and university students, who want to get acquainted with these emerging fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 176 pp. Englisch. Artikel-Nr. 9780792371090
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals. Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation. New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter theory, and fast filtering in the frequency domain. The included CD-ROM can be played using any compact disc player to play the simulation results that are described in the text. When inserted into a computer, it furthermore gives Matlab implementations of the new algorithms along with audio data with which to experiment. This makes the book suited to researchers, engineers, and university students, who want to get acquainted with these emerging fields. Artikel-Nr. 9780792371090
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780792371090_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. hardback/cd-rom edition. 160 pages. 9.50x6.25x0.50 inches. In Stock. Artikel-Nr. x-0792371097
Anzahl: 2 verfügbar