Verwandte Artikel zu Proceedings of the Second ISAAC Congress: Volume 2:...

Proceedings of the Second ISAAC Congress: Volume 2: This project has been executed with Grant No. 11-56 from the Commemorative Association for the ... for Analysis, Applications and Computation) - Hardcover

 
9780792365983: Proceedings of the Second ISAAC Congress: Volume 2: This project has been executed with Grant No. 11-56 from the Commemorative Association for the ... for Analysis, Applications and Computation)

Inhaltsangabe

Let 8 be a Riemann surface of analytically finite type (9, n) with 29 ­ 2+n> O. Take two pointsP1, P2 E 8, and set 8 ,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor­ phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso­ topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub­ pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen­ Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)(·,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)).

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Let 8 be a Riemann surface of analytically finite type (9, n) with 29 ­ 2+n> O. Take two pointsP1, P2 E 8, and set 8 ,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor­ phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso­ topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub­ pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen­ Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)(·,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)).

Reseña del editor

The emphasis of the two volumes is on complex analysis with classical topics such as value distribution, and modern topics such as complex dynamics, both in one and several complex variables; the application of complex analysis to partial differential equations and integral equations and its generalization to quaternionic and Clifford analysis; new results from real and functional analysis, numerical and computational mathematics; and areas in applied mathematics such as acoustics and computational biology.
Audience: Researchers, especially those working in real and complex analysis, in numerical analysis, and in mathematical physics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Proceedings of the Second ISAAC Congress: Volume 2:...

Foto des Verkäufers

Heinrich G. W. Begehr
ISBN 10: 0792365984 ISBN 13: 9780792365983
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Let 8 be a Riemann surface of analytically finite type (9, n) with 29 2+n O. Take two pointsP1, P2 E 8, and set 8 ,12= 8 {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)( ,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)). Artikel-Nr. 9780792365983

Verkäufer kontaktieren

Neu kaufen

EUR 223,11
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2000
ISBN 10: 0792365984 ISBN 13: 9780792365983
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780792365983_new

Verkäufer kontaktieren

Neu kaufen

EUR 227,19
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Begehr, Heinrich G.W. (Edited by)/ Gilbert, R.P. (Edited by)/ Kajiwara, Joji (Edited by)
Verlag: Springer, 2000
ISBN 10: 0792365984 ISBN 13: 9780792365983
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 1617 pages. 10.00x6.50x1.75 inches. In Stock. Artikel-Nr. x-0792365984

Verkäufer kontaktieren

Neu kaufen

EUR 309,84
Währung umrechnen
Versand: EUR 11,54
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb