Verwandte Artikel zu Zariskian Filtrations: 2 (K-Monographs in Mathematics)

Zariskian Filtrations: 2 (K-Monographs in Mathematics) - Hardcover

 
9780792341840: Zariskian Filtrations: 2 (K-Monographs in Mathematics)

Inhaltsangabe

In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, .... . In Non­ commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, .... . In Non­ commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira.

Reseña del editor

This book is the first to present a complete theory of filtrations on associative rings, combining techniques stemming from number theory related to valuations, with facts originating in the study of rings of differential operators on varieties. It deals with the homological algebra part of the theory via an innovative use of graded ring theory applied to the Rees ring of a filtration. This leads to a completely new approach to extensions of valuations, regularity conditions on noncommutative algebras, and geometric aspects of rings of differential operators, and provides new applications related to deformations of algebras, gauge algebras and other physics-related objects.
Audience: This volume will be of interest to graduate students and researchers in different fields of mathematics and mathematical physics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut bis sehr gut
Dordrecht, Kluwer (1996). gr.8°...
Diesen Artikel anzeigen

EUR 45,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 13,72 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789048147380: Zariskian Filtrations: 2 (K-Monographs in Mathematics)

Vorgestellte Ausgabe

ISBN 10:  9048147387 ISBN 13:  9789048147380
Verlag: Springer, 2010
Softcover

Suchergebnisse für Zariskian Filtrations: 2 (K-Monographs in Mathematics)

Beispielbild für diese ISBN

Li Huishi; Van Oystaeyen, Freddy
Verlag: Springer, 1996
ISBN 10: 0792341848 ISBN 13: 9780792341840
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780792341840_new

Verkäufer kontaktieren

Neu kaufen

EUR 57,93
Währung umrechnen
Versand: EUR 13,72
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

LI HUISHI & Freddy VAN OYSTAEYEN
Verlag: Kluwer, Dordrecht, 1996
ISBN 10: 0792341848 ISBN 13: 9780792341840
Gebraucht Hardcover

Anbieter: Antiquariat Renner OHG, Albstadt, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Sehr gut. Dordrecht, Kluwer (1996). gr.8°. XI, 252 p. Hardbound. (top edge slightly stained, otherwise in very good condition).- K-Monographs in Mathematics, 2. Artikel-Nr. 76855

Verkäufer kontaktieren

Gebraucht kaufen

EUR 30,00
Währung umrechnen
Versand: EUR 45,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Oystaeyen, F. Van; Li, Huishi
ISBN 10: 0792341848 ISBN 13: 9780792341840
Neu Hardcover

Anbieter: Kennys Bookstore, Olney, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Presents the theory of filtrations on associative rings, combining techniques stemming from number theory related to valuations, with facts originating in the study of rings of differential operators on varieties. This book deals with the homological algebra part of the theory via use of graded ring theory applied to the Rees ring of a filtration. Series: K-Monographs in Mathematics. Num Pages: 253 pages, biography. BIC Classification: PBF. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 15. Weight in Grams: 553. . 1996. Hardback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780792341840

Verkäufer kontaktieren

Neu kaufen

EUR 91,44
Währung umrechnen
Versand: EUR 9,03
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

Freddy Van Oystaeyen
ISBN 10: 0792341848 ISBN 13: 9780792341840
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, . . In Non commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. Artikel-Nr. 9780792341840

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Freddy Van Oystaeyen
ISBN 10: 0792341848 ISBN 13: 9780792341840
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, . . In Non commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira. Artikel-Nr. 9780792341840

Verkäufer kontaktieren

Neu kaufen

EUR 59,97
Währung umrechnen
Versand: EUR 62,86
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb