Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
`... can be highly recommended to anyone who wants to understand what stochastic decomposition is all about ...'
Mathematical Reviews, 98d
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 42,44 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found a. Artikel-Nr. 458439014
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780792338406_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Salish Sea Books, Bellingham, WA, USA
Hardcover. Zustand: Fine. 0792338405 Fine/As New; Hardcover; Covers are still glossy with "sharp" edge-corners; Unblemished textblock edges; The endpapers and all text pages are bright and unmarked; Binding is tight with a straight spine; This book will be stored and delivered in a sturdy cardboard box with foam padding; Medium Format (8.5" - 9.75" tall); Blue covers with title in black lettering; 1996, Springer-Verlag Publishing; 222 pages; "Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming (Nonconvex Optimization and Its Applications)," by Julia L. Higle & S. Sen. Artikel-Nr. SKU-U30FH10303017
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications. Artikel-Nr. 9780792338406
Anzahl: 2 verfügbar