In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac’s famous book on quantum mechanics [Dirac, 1930] and von Neumann’s classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967].
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967].
This volume is the result of extensive research into the foundations of quantum mechanics, and presents a new formulation of quantum theory which resolves many existing problems. The formalism is experimentally motivated and is shown to be consistent with recent foundational approaches to quantum mechanics. It is based on new extensions of the theory of group representations, which are developed and illustrated in the text. This new approach establishes connections with quantum logic, philosophy, and the history of science, allowing a broad range of applications not only in physics, but also in such areas as signal processing and neuroscience.
Audience: This book will be of interest to researchers and students. It is recommended as a supplementary textbook for advanced courses in quantum mechanics. A background in quantum mechanics and complex analysis is assumed.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C\* approach [Emch, 1972]. An approach through stochastic differential equations ('stochastic mechanics') was developed [Nelson, 1964, 1966, 1967].Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 692 pp. Englisch. Artikel-Nr. 9780792337942
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C\* approach [Emch, 1972]. An approach through stochastic differential equations ('stochastic mechanics') was developed [Nelson, 1964, 1966, 1967]. Artikel-Nr. 9780792337942
Anzahl: 1 verfügbar